660 research outputs found

    Simulation of neutron production in hadron-nucleus and nucleus-nucleus interactions in Geant4

    Get PDF
    Studying experimental data obtained at ITEP [1] on neutron production in interactions of protons with various nuclei in the energy range from 747 MeV up to 8.1 GeV, we have found that slow neutron spectra have scaling and asymptotic properties [2]. The spectra weakly depend on the collision energy at momenta of projectile protons larger than 5 - 6 GeV/c. These properties are taken into account in the Geant4 Fritiof (FTF) model. The improved FTF model describes as well as the Geant4 Bertini model the experimental data on neutron production by 1.2 GeV and 1.6 GeV protons on targets (Fe, Pb) [3] and by 3.0 GeV protons on various targets (Al, Fe, Pb) [4]. For neutron production in antiproton-nucleus interactions, it was demonstrated that the FTF results are in a satisfactory agreement with experimental data of the LEAR collaboration [5]. The FTF model gives promising results for neutron production in nucleus - nucleus interactions at projectile energy 1 - 2 GeV per nucleon [6]. The observed properties allow one to predict neutron yields in the nucleus-nucleus interactions at high and very high energies. Predictions for the NICA/MPD experiment at JINR are presented.Comment: 6 pages, 5 figures. Contribution to Proceedings of Baldin ISHEPP XXI

    Geant4 FTF model description of the latest data by the NA61/SHINE collaboration on 40Ar+45Sc{\rm ^{40}Ar+{}^{45}Sc} interactions

    Full text link
    It is shown that the Geant4 FTF model, which does not include the simulation of the hard parton-parton scattering and the formation of the quark-gluon plasma (QGP), describes well the NA61/SHINE data on π\pi^- meson distributions for the interactions at sNN=\sqrt{s_{NN}}= 5.2, 6.1, 7.6 and 8.8 GeV. At higher energies, sNN=\sqrt{s_{NN}}= 11.9 and 16.8 GeV, the model underestimates the data. This is considered as an indication of the formation of QGP at higher energies in central collisions of light and intermediate nuclei than in collisions of heavy nuclei (sNN6\sqrt{s_{NN}}\sim 6 GeV).Comment: 5 pages, 2 figure

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Heavy Flavours in Collider Experiments

    Get PDF
    Current issues in the studies of Heavy Flavours in colliders are described with particular emphasis on experiments in which the UK is involved. Results on charm production at HERA are examined and compared to those at the Tevatron. B production rates at the Tevatron as well as the status of B lifetimes and mixing in the LEP collaborations and at the Tevatron are highlighted. The measurement of sin2beta from CDF is described as well as the most recent results on top physics at the Tevatron

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    Full text link
    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Search for the Supersymmetric Partner of the Top-Quark in ppˉp \bar{p} Collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV}

    Full text link
    We report on a search for the supersymmetric partner of the top quark (stop) produced in ttˉt \bar{t} events using 110pb1110 {\rm pb}^{-1} of ppˉp \bar{p} collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV} recorded with the Collider Detector at Fermilab. In the case of a light stop squark, the decay of the top quark into stop plus the lightest supersymmetric particle (LSP) could have a significant branching ratio. The observed events are consistent with Standard Model ttˉt \bar{t} production and decay. Hence, we set limits on the branching ratio of the top quark decaying into stop plus LSP, excluding branching ratios above 45% for a LSP mass up to 40 {\rm GeV/c}2^{2}.Comment: 11 pages, 4 figure
    corecore