9,124 research outputs found

    GL-equivariant modules over polynomial rings in infinitely many variables

    Full text link
    Consider the polynomial ring in countably infinitely many variables over a field of characteristic zero, together with its natural action of the infinite general linear group G. We study the algebraic and homological properties of finitely generated modules over this ring that are equipped with a compatible G-action. We define and prove finiteness properties for analogues of Hilbert series, systems of parameters, depth, local cohomology, Koszul duality, and regularity. We also show that this category is built out of a simpler, more combinatorial, quiver category which we describe explicitly. Our work is motivated by recent papers in the literature which study finiteness properties of infinite polynomial rings equipped with group actions. (For example, the paper by Church, Ellenberg and Farb on the category of FI-modules, which is equivalent to our category.) Along the way, we see several connections with the character polynomials from the representation theory of the symmetric groups. Several examples are given to illustrate that the invariants we introduce are explicit and computable.Comment: 59 pages, uses ytableau.sty; v2: expanded details in many proofs especially in Sections 2 and 4, Section 6 substantially expanded, added references; v3: corrected typos and Remark 4.3.3 from published versio

    Hilbert series for twisted commutative algebras

    Get PDF
    Suppose that for each n >= 0 we have a representation MnM_n of the symmetric group S_n. Such sequences arise in a wide variety of contexts, and often exhibit uniformity in some way. We prove a number of general results along these lines in this paper: our prototypical theorem states that if MnM_n can be given a suitable module structure over a twisted commutative algebra then the sequence MnM_n follows a predictable pattern. We phrase these results precisely in the language of Hilbert series (or Poincar\'e series, or formal characters) of modules over tca's.Comment: 28 page

    Gr\"obner methods for representations of combinatorial categories

    Full text link
    Given a category C of a combinatorial nature, we study the following fundamental question: how does the combinatorial behavior of C affect the algebraic behavior of representations of C? We prove two general results. The first gives a combinatorial criterion for representations of C to admit a theory of Gr\"obner bases. From this, we obtain a criterion for noetherianity of representations. The second gives a combinatorial criterion for a general "rationality" result for Hilbert series of representations of C. This criterion connects to the theory of formal languages, and makes essential use of results on the generating functions of languages, such as the transfer-matrix method and the Chomsky-Sch\"utzenberger theorem. Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example: we give a new, more robust, proof that FI-modules (originally introduced by Church-Ellenberg-Farb), and a family of natural generalizations, are noetherian; we give an easy proof of a generalization of the Lannes-Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of Δ\Delta-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic.Comment: 41 pages; v2: Moved old Sections 3.4, 10, 11, 13.2 and connected text to arxiv:1410.6054v1, Section 13.1 removed and will appear elsewhere; v3: substantial revision and reorganization of section

    The cone of Betti tables over a rational normal curve

    Full text link
    We describe the cone of Betti tables of Cohen-Macaulay modules over the homogeneous coordinate ring of a rational normal curve.Comment: 9 pages; v2: corrected typos, added references, Section 5, and details to proof

    Littlewood complexes and analogues of determinantal varieties

    Full text link
    One interesting combinatorial feature of classical determinantal varieties is that the character of their coordinate rings give a natural truncation of the Cauchy identity in the theory of symmetric functions. Natural generalizations of these varieties exist and have been studied for the other classical groups. In this paper we develop the relevant properties from scratch. By studying the isotypic decomposition of their minimal free resolutions one can recover classical identities due to Littlewood for expressing an irreducible character of a classical group in terms of Schur functions. We propose generalizations for the exceptional groups. In type G_2, we completely analyze the variety and its minimal free resolution and get an analogue of Littlewood's identities. We have partial results for the other cases. In particular, these varieties are always normal with rational singularities.Comment: 31 pages; v2: added more details to proofs and calculations; v3: corrected typos and changed section/theorem numberin
    corecore