1,385 research outputs found

    Metal System for Chemical Reactions and for Studying Properties of Gases and Liquids

    Get PDF
    An all-metal system, made of copper, is herein described. It is suitable for working with those chemicals which do not attack copper. In particular it has been found very useful in the purification of BF3 and B(CH3)3. Some important features of such a system are (1) a complete absence of contaminants; (2) reactions may be carried out up to 500°C; (3) pressures up to several hundred pounds per square inch may be used; (4) flow of gases from very low to very high pressures may be easily controlled; (5) the system is very rugged. This latter point is particularly desirable where noxious or inflammable gases (such as B(CH3)3) are used. A method is also described whereby gases from sealed-off containers under either high or low pressures may be easily retrieved without introducing impurities. Other important advantages of such a system are mentioned in the text

    Modeling reaction-diffusion of molecules on surface and in volume spaces with the E-Cell System

    Get PDF
    The-Cell System is an advanced open-source simulation platform to model and analyze biochemical reaction networks. The present algorithm modules of the system assume that the reacting molecules are all homogeneously distributed in the reaction compartments, which is not the case in some cellular processes. The MinCDE system in Escherichia coli, for example, relies on intricately controlled reaction, diffusion and localization of Min proteins on the membrane and in the cytoplasm compartments to inhibit cell division at the poles of the rod-shaped cell. To model such processes, we have extended the E-Cell System to support reaction-diffusion and dynamic localization of molecules in volume and surface compartments. We evaluated our method by modeling the in vivo dynamics of MinD and MinE and comparing their simulated localization patterns to the observations in experiments and previous computational work. In both cases, our simulation results are in good agreement

    Reaction-diffusion kinetics on lattice at the microscopic scale

    Full text link
    Lattice-based stochastic simulators are commonly used to study biological reaction-diffusion processes. Some of these schemes that are based on the reaction-diffusion master equation (RDME), can simulate for extended spatial and temporal scales but cannot directly account for the microscopic effects in the cell such as volume exclusion and diffusion-influenced reactions. Nonetheless, schemes based on the high-resolution microscopic lattice method (MLM) can directly simulate these effects by representing each finite-sized molecule explicitly as a random walker on fine lattice voxels. The theory and consistency of MLM in simulating diffusion-influenced reactions have not been clarified in detail. Here, we examine MLM in solving diffusion-influenced reactions in 3D space by employing the Spatiocyte simulation scheme. Applying the random walk theory, we construct the general theoretical framework underlying the method and obtain analytical expressions for the total rebinding probability and the effective reaction rate. By matching Collins-Kimball and lattice-based rate constants, we obtained the exact expressions to determine the reaction acceptance probability and voxel size. We found that the size of voxel should be about 2% larger than the molecule. MLM is validated by numerical simulations, showing good agreement with the off-lattice particle-based method, eGFRD. MLM run time is more than an order of magnitude faster than eGFRD when diffusing macromolecules with typical concentrations in the cell. MLM also showed good agreements with eGFRD and mean-field models in case studies of two basic motifs of intracellular signaling, the protein production-degradation process and the dual phosphorylation cycle. Moreover, when a reaction compartment is populated with volume-excluding obstacles, MLM captures the non-classical reaction kinetics caused by anomalous diffusion of reacting molecules

    Room temperature soft ferromagnetism in the nanocrystalline form of YCo2 - a well-known bulk Pauli paramagnet

    Full text link
    The Laves phase compound, YCo2, is a well-known exchange-enahnced Pauli paramagnet. We report here that, in the nanocrystalline form, this compound interestingly is an itinerant ferromagnet at room temperature with a low coercive-field. The magnitude of the saturation moment (about 1 Bohr-magneton per formula unit) is large enough to infer that the ferromagnetism is not a surface phenomenon in these nanocrystallites. Since these ferromagnetic nanocrystallines are easy to synthesize with a stable form in air, one can explore applications, particularly where hysteresis is a disadvantage

    Large Deviations of Extreme Eigenvalues of Random Matrices

    Full text link
    We calculate analytically the probability of large deviations from its mean of the largest (smallest) eigenvalue of random matrices belonging to the Gaussian orthogonal, unitary and symplectic ensembles. In particular, we show that the probability that all the eigenvalues of an (N\times N) random matrix are positive (negative) decreases for large N as \exp[-\beta \theta(0) N^2] where the parameter \beta characterizes the ensemble and the exponent \theta(0)=(\ln 3)/4=0.274653... is universal. We also calculate exactly the average density of states in matrices whose eigenvalues are restricted to be larger than a fixed number \zeta, thus generalizing the celebrated Wigner semi-circle law. The density of states generically exhibits an inverse square-root singularity at \zeta.Comment: 4 pages Revtex, 4 .eps figures included, typos corrected, published versio

    Superconductivity in Ru substituted BaFe2-xRuxAs2

    Get PDF
    The occurrence of bulk superconductivity at ~22 K is reported in polycrystalline samples of BaFe2-xRuxAs2 for nominal Ru content in the range of x=0.75 to 1.125. A systematic suppression of the spin density wave transition temperature (TSDW) precedes the appearance of superconductivity in the system. A phase diagram is proposed based on the measured TSDW and superconducting transition temperature (TC) variations as a function of Ru composition. Band structure calculations, indicate introduction of electron carriers in the system upon Ru substitutiom. The calculated magnetic moment on Fe shows a minimum at x=1.0, suggesting that the suppression of the magnetic moment is associated with the emergence of superconductivity. Results of low temperature and high field Mossbauer measurements are presented. These indicate weakening of magnetic interaction with Ru substitutionComment: 20 pages 10 figure

    Extreme Value Statistics of Eigenvalues of Gaussian Random Matrices

    Full text link
    We compute exact asymptotic results for the probability of the occurrence of large deviations of the largest (smallest) eigenvalue of random matrices belonging to the Gaussian orthogonal, unitary and symplectic ensembles. In particular, we show that the probability that all the eigenvalues of an (NxN) random matrix are positive (negative) decreases for large N as ~\exp[-\beta \theta(0) N^2] where the Dyson index \beta characterizes the ensemble and the exponent \theta(0)=(\ln 3)/4=0.274653... is universal. We compute the probability that the eigenvalues lie in the interval [\zeta_1,\zeta_2] which allows us to calculate the joint probability distribution of the minimum and the maximum eigenvalue. As a byproduct, we also obtain exactly the average density of states in Gaussian ensembles whose eigenvalues are restricted to lie in the interval [\zeta_1,\zeta_2], thus generalizing the celebrated Wigner semi-circle law to these restricted ensembles. It is found that the density of states generically exhibits an inverse square-root singularity at the location of the barriers. These results are confirmed by numerical simulations.Comment: 17 pages Revtex, 5 .eps figures include

    Estimasi Volume Sampah Domestik Dan Rekomendasi Rute Pengangkutan Sampah Berdasarkan Analisis Spasial Di Kota Surakarta

    Full text link
    Penelitian ini bertujuan untuk menyusun model estimasi volume sampah domestik dan menentukan rute optimum pengangkutan sampah dari TPS ke TPA di Kota Surakarta. Metode penelitian yang digunakan yaitu metode survey dengan pengambilan data secara sampling (Proportional Random Sampling) dan analisis dilakukan secara kuantitatif dan kualitatif. Dari penelitian ini dihasilkan : a) jumlah rumah mukim hasil dari interpretasi citra Quickbird sebesar 141.049, estimasi jumlah penduduk sebesar 646.732 jiwa, estimasi volume sampah domestik sebesar 2.766.399,91 dm3, dan b) 52 rute optimum pengangkutan sampah dari TPS menuju TPA Mojosongo
    corecore