1,385 research outputs found
Metal System for Chemical Reactions and for Studying Properties of Gases and Liquids
An all-metal system, made of copper, is herein described. It is suitable for working with those chemicals which do not attack copper. In particular it has been found very useful in the purification of BF3 and B(CH3)3. Some important features of such a system are (1) a complete absence of contaminants; (2) reactions may be carried out up to 500°C; (3) pressures up to several hundred pounds per square inch may be used; (4) flow of gases from very low to very high pressures may be easily controlled; (5) the system is very rugged. This latter point is particularly desirable where noxious or inflammable gases (such as B(CH3)3) are used. A method is also described whereby gases from sealed-off containers under either high or low pressures may be easily retrieved without introducing impurities. Other important advantages of such a system are mentioned in the text
Modeling reaction-diffusion of molecules on surface and in volume spaces with the E-Cell System
The-Cell System is an advanced open-source simulation platform to model and analyze biochemical reaction networks. The present algorithm modules of the system assume that the reacting molecules are all homogeneously distributed in the reaction compartments, which is not the case in some cellular processes. The MinCDE system in Escherichia coli, for example, relies on intricately controlled reaction, diffusion and localization of Min proteins on the membrane and in the cytoplasm compartments to inhibit cell division at the poles of the rod-shaped cell. To model such processes, we have extended the E-Cell System to support reaction-diffusion and dynamic localization of molecules in volume and surface compartments. We evaluated our method by modeling the in vivo dynamics of MinD and MinE and comparing their simulated localization patterns to the observations in experiments and previous computational work. In both cases, our simulation results are in good agreement
Reaction-diffusion kinetics on lattice at the microscopic scale
Lattice-based stochastic simulators are commonly used to study biological
reaction-diffusion processes. Some of these schemes that are based on the
reaction-diffusion master equation (RDME), can simulate for extended spatial
and temporal scales but cannot directly account for the microscopic effects in
the cell such as volume exclusion and diffusion-influenced reactions.
Nonetheless, schemes based on the high-resolution microscopic lattice method
(MLM) can directly simulate these effects by representing each finite-sized
molecule explicitly as a random walker on fine lattice voxels. The theory and
consistency of MLM in simulating diffusion-influenced reactions have not been
clarified in detail. Here, we examine MLM in solving diffusion-influenced
reactions in 3D space by employing the Spatiocyte simulation scheme. Applying
the random walk theory, we construct the general theoretical framework
underlying the method and obtain analytical expressions for the total rebinding
probability and the effective reaction rate. By matching Collins-Kimball and
lattice-based rate constants, we obtained the exact expressions to determine
the reaction acceptance probability and voxel size. We found that the size of
voxel should be about 2% larger than the molecule. MLM is validated by
numerical simulations, showing good agreement with the off-lattice
particle-based method, eGFRD. MLM run time is more than an order of magnitude
faster than eGFRD when diffusing macromolecules with typical concentrations in
the cell. MLM also showed good agreements with eGFRD and mean-field models in
case studies of two basic motifs of intracellular signaling, the protein
production-degradation process and the dual phosphorylation cycle. Moreover,
when a reaction compartment is populated with volume-excluding obstacles, MLM
captures the non-classical reaction kinetics caused by anomalous diffusion of
reacting molecules
Room temperature soft ferromagnetism in the nanocrystalline form of YCo2 - a well-known bulk Pauli paramagnet
The Laves phase compound, YCo2, is a well-known exchange-enahnced Pauli
paramagnet. We report here that, in the nanocrystalline form, this compound
interestingly is an itinerant ferromagnet at room temperature with a low
coercive-field. The magnitude of the saturation moment (about 1 Bohr-magneton
per formula unit) is large enough to infer that the ferromagnetism is not a
surface phenomenon in these nanocrystallites. Since these ferromagnetic
nanocrystallines are easy to synthesize with a stable form in air, one can
explore applications, particularly where hysteresis is a disadvantage
Large Deviations of Extreme Eigenvalues of Random Matrices
We calculate analytically the probability of large deviations from its mean
of the largest (smallest) eigenvalue of random matrices belonging to the
Gaussian orthogonal, unitary and symplectic ensembles. In particular, we show
that the probability that all the eigenvalues of an (N\times N) random matrix
are positive (negative) decreases for large N as \exp[-\beta \theta(0) N^2]
where the parameter \beta characterizes the ensemble and the exponent
\theta(0)=(\ln 3)/4=0.274653... is universal. We also calculate exactly the
average density of states in matrices whose eigenvalues are restricted to be
larger than a fixed number \zeta, thus generalizing the celebrated Wigner
semi-circle law. The density of states generically exhibits an inverse
square-root singularity at \zeta.Comment: 4 pages Revtex, 4 .eps figures included, typos corrected, published
versio
Superconductivity in Ru substituted BaFe2-xRuxAs2
The occurrence of bulk superconductivity at ~22 K is reported in
polycrystalline samples of BaFe2-xRuxAs2 for nominal Ru content in the range of
x=0.75 to 1.125. A systematic suppression of the spin density wave transition
temperature (TSDW) precedes the appearance of superconductivity in the system.
A phase diagram is proposed based on the measured TSDW and superconducting
transition temperature (TC) variations as a function of Ru composition. Band
structure calculations, indicate introduction of electron carriers in the
system upon Ru substitutiom. The calculated magnetic moment on Fe shows a
minimum at x=1.0, suggesting that the suppression of the magnetic moment is
associated with the emergence of superconductivity. Results of low temperature
and high field Mossbauer measurements are presented. These indicate weakening
of magnetic interaction with Ru substitutionComment: 20 pages 10 figure
Extreme Value Statistics of Eigenvalues of Gaussian Random Matrices
We compute exact asymptotic results for the probability of the occurrence of
large deviations of the largest (smallest) eigenvalue of random matrices
belonging to the Gaussian orthogonal, unitary and symplectic ensembles. In
particular, we show that the probability that all the eigenvalues of an (NxN)
random matrix are positive (negative) decreases for large N as ~\exp[-\beta
\theta(0) N^2] where the Dyson index \beta characterizes the ensemble and the
exponent \theta(0)=(\ln 3)/4=0.274653... is universal. We compute the
probability that the eigenvalues lie in the interval [\zeta_1,\zeta_2] which
allows us to calculate the joint probability distribution of the minimum and
the maximum eigenvalue. As a byproduct, we also obtain exactly the average
density of states in Gaussian ensembles whose eigenvalues are restricted to lie
in the interval [\zeta_1,\zeta_2], thus generalizing the celebrated Wigner
semi-circle law to these restricted ensembles. It is found that the density of
states generically exhibits an inverse square-root singularity at the location
of the barriers. These results are confirmed by numerical simulations.Comment: 17 pages Revtex, 5 .eps figures include
Estimasi Volume Sampah Domestik Dan Rekomendasi Rute Pengangkutan Sampah Berdasarkan Analisis Spasial Di Kota Surakarta
Penelitian ini bertujuan untuk menyusun model estimasi volume sampah domestik dan menentukan rute optimum pengangkutan sampah dari TPS ke TPA di Kota Surakarta. Metode penelitian yang digunakan yaitu metode survey dengan pengambilan data secara sampling (Proportional Random Sampling) dan analisis dilakukan secara kuantitatif dan kualitatif. Dari penelitian ini dihasilkan : a) jumlah rumah mukim hasil dari interpretasi citra Quickbird sebesar 141.049, estimasi jumlah penduduk sebesar 646.732 jiwa, estimasi volume sampah domestik sebesar 2.766.399,91 dm3, dan b) 52 rute optimum pengangkutan sampah dari TPS menuju TPA Mojosongo
- …
