21 research outputs found

    A Multicenter Observer Performance Study of 3D JPEG2000 Compression of Thin-Slice CT

    Get PDF
    The goal of this study was to determine the compression level at which 3D JPEG2000 compression of thin-slice CTs of the chest and abdomen–pelvis becomes visually perceptible. A secondary goal was to determine if residents in training and non-physicians are substantially different from experienced radiologists in their perception of compression-related changes. This study used multidetector computed tomography 3D datasets with 0.625–1-mm thickness slices of standard chest, abdomen, or pelvis, clipped to 12 bits. The Kakadu v5.2 JPEG2000 compression algorithm was used to compress and decompress the 80 examinations creating four sets of images: lossless, 1.5 bpp (8:1), 1 bpp (12:1), and 0.75 bpp (16:1). Two randomly selected slices from each examination were shown to observers using a flicker mode paradigm in which observers rapidly toggled between two images, the original and a compressed version, with the task of deciding whether differences between them could be detected. Six staff radiologists, four residents, and six PhDs experienced in medical imaging (from three institutions) served as observers. Overall, 77.46% of observers detected differences at 8:1, 94.75% at 12:1, and 98.59% at 16:1 compression levels. Across all compression levels, the staff radiologists noted differences 64.70% of the time, the resident’s detected differences 71.91% of the time, and the PhDs detected differences 69.95% of the time. Even mild compression is perceptible with current technology. The ability to detect differences does not equate to diagnostic differences, although perception of compression artifacts could affect diagnostic decision making and diagnostic workflow

    Wavelet compression of medical images.

    Full text link

    User Interface of a Teleradiology System for the MR Assessment of Multiple Sclerosis

    No full text
    The aim of this study was to assess the image display of a web-based teleradiology system that uses a common web browser and has no need of proprietary applets, plug-ins, or dedicated software for DICOM display. The teleradiology system (TS) is connected to the Internet by ADSL and to radiological modalities using the DICOM standard with TCP/IP. Images were displayed on a PC through Internet connection with the remote TS using a common web browser. MS lesion number and volume in T1- and T2-weighted images (T1w and T2w, respectively) of 30 brain MR studies were quantified using both the TS and a conventional software. Wilcoxon signed ranks test and intraclass correlation coefficient (ICC) were used to assess the variability and concordance between intra- and inter-observer and TS and conventional DICOM viewer, setting significance at p < 0.05. No significant differences in T1w and T2w volumes between the TS and the conventional software were found by either operator. The ICC results showed a high level of inter-operator agreement in volume estimation in T1w and T2w images using the two systems. Quantitative assessment of MS lesion volumes in T1w and T2w images with a user interface of a teleradiology system that allows the consultation by means of a common web browser, without the need for proprietary plug-ins, applets, or dedicated software for DICOM display showed no significant differences from, and almost complete agreement with, conventional DICOM viewers
    corecore