1,184 research outputs found
Free monadic Tarski and MMI3-algebras
MMI3-algebras are a generalization of the monadic Tarski algebras as defined by A. Monteiro and L. Iturrioz, and a particular case of the MMIn+1-algebras defined by A. Figallo. They can also be seen as monadic three-valued £ukasiewicz algebras without a first element. By using this point of view, and the free monadic extensions, we construct the free MMI3-algebras on a finite number of generators, and indicate the coordinates of the generators. As a byproduct, we also obtain a construction of the free monadic Tarski algebras.Fil: Entizne, Rosana V.. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Monteiro, Luiz F.. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Savini, Sonia M.. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Viglizzo, Ignacio Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentin
Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane
Planck is a European Space Agency (ESA) satellite, launched in May 2009, which will map the cosmic microwave background anisotropies in intensity and polarisation with unprecedented detail and sensitivity. It will also provide full-sky maps of astrophysical foregrounds. An accurate knowledge of the telescope beam patterns is an essential element for a correct analysis of the acquired astrophysical data. We present a detailed description of the optical design of the High Frequency Instrument (HFI) together with some of the optical performances measured during the calibration campaigns. We report on the evolution of the knowledge of the pre-launch HFI beam patterns when coupled to ideal telescope elements, and on their significance for the HFI data analysis procedure
Macular Microcysts in Mitochondrial Optic Neuropathies: Prevalence and Retinal Layer Thickness Measurements.
PurposeTo investigate the thickness of the retinal layers and to assess the prevalence of macular microcysts (MM) in the inner nuclear layer (INL) of patients with mitochondrial optic neuropathies (MON).MethodsAll patients with molecularly confirmed MON, i.e. Leber's Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), referred between 2010 and 2012 were enrolled. Eight patients with MM were compared with two control groups: MON patients without MM matched by age, peripapillary retinal nerve fiber layer (RNFL) thickness, and visual acuity, as well as age-matched controls. Retinal segmentation was performed using specific Optical coherence tomography (OCT) software (Carl Zeiss Meditec). Macular segmentation thickness values of the three groups were compared by one-way analysis of variance with Bonferroni post hoc corrections.ResultsMM were identified in 5/90 (5.6%) patients with LHON and 3/58 (5.2%) with DOA. The INL was thicker in patients with MON compared to controls regardless of the presence of MM [133.1±7μm vs 122.3±9μm in MM patients (p<0.01) and 128.5±8μm vs. 122.3±9μm in no-MM patients (p<0.05)], however the outer nuclear layer (ONL) was thicker in patients with MM (101.4±1mμ) compared to patients without MM [77.5±8mμ (p<0.001)] and controls [78.4±7mμ (p<0.001)]. ONL thickness did not significantly differ between patients without MM and controls.ConclusionThe prevalence of MM in MON is low (5-6%), but associated with ONL thickening. We speculate that in MON patients with MM, vitreo-retinal traction contributes to the thickening of ONL as well as to the production of cystic spaces
The NIKA instrument: results and perspectives towards a permanent KID based camera for the Pico Veleta observatory
The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to
millimetric astronomy. In 2009 it was the first multiplexed KID camera on the
sky; currently it is installed at the focal plane of the IRAM 30-meters
telescope at Pico Veleta (Spain). We present preliminary data from the last
observational run and the ongoing developments devoted to the next NIKA-2
kilopixels camera, to be commissioned in 2015. We also report on the latest
laboratory measurements, and recent improvements in detector cosmetics and
read-out electronics. Furthermore, we describe a new acquisition strategy
allowing us to improve the photometric accuracy, and the related automatic
tuning procedure.Comment: 24th International Symposium on Space Terahertz Technology, ISSTT
2013, April 8 to 10, 2013, Groningen, the Netherland
Latest NIKA results and the NIKA-2 project
NIKA (New IRAM KID Arrays) is a dual-band imaging instrument installed at the
IRAM (Institut de RadioAstronomie Millimetrique) 30-meter telescope at Pico
Veleta (Spain). Two distinct Kinetic Inductance Detectors (KID) focal planes
allow the camera to simultaneously image a field-of-view of about 2 arc-min in
the bands 125 to 175 GHz (150 GHz) and 200 to 280 GHz (240 GHz). The
sensitivity and stability achieved during the last commissioning Run in June
2013 allows opening the instrument to general observers. We report here the
latest results, in particular in terms of sensitivity, now comparable to the
state-of-the-art Transition Edge Sensors (TES) bolometers, relative and
absolute photometry. We describe briefly the next generation NIKA-2 instrument,
selected by IRAM to occupy, from 2015, the continuum imager/polarimeter slot at
the 30-m telescope.Comment: Proceedings of Low Temperature Detectors 15 (LTD-15), Pasadena, June
201
Detection of the tSZ effect with the NIKA camera
We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect
from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors)
based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic
Microwave Background) spectrum produced by the inverse Compton interaction of
CMB photons with the hot electrons of the ionized intra-cluster medium. The
massive, intermediate redshift cluster RX J1347.5-1145 has been observed using
NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging
camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies
of the superconducting resonators are shifted by mm-wave photons absorption.
This tSZ cluster observation demonstrates the potential of the next generation
NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta
(Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at
240GHz, providing in that band also a measurement of the linear polarization.
NIKA2 will be commissioned in 2015.Comment: SF2A Proceedings 201
First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster
Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters
The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy
NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave
astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID).
The pathfinder instrument, NIKA, has already shown state-of-the-art detector
performance. NIKA2 builds upon this experience but goes one step further,
increasing the total pixel count by a factor 10 while maintaining the
same per pixel performance. For the next decade, this camera will be the
resident photometric instrument of the Institut de Radio Astronomie
Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we
give an overview of the main components of NIKA2, and describe the achieved
detector performance. The camera has been permanently installed at the IRAM 30m
telescope in October 2015. It will be made accessible to the scientific
community at the end of 2016, after a one-year commissioning period. When this
happens, NIKA2 will become a fundamental tool for astronomers worldwide.Comment: Proceedings of the 16th Low Temperature Detectors workshop. To be
published in the Journal of Low Temperature Physics. 8 pages, 4 figures, 1
tabl
High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis
The prototype of the NIKA2 camera, NIKA, is an instrument operating at the
IRAM 30-m telescope, which can observe simultaneously at 150 and 260GHz. One of
the main goals of NIKA2 is to measure the pressure distribution in galaxy
clusters at high resolution using the thermal SZ (tSZ) effect. Such
observations have already proved to be an excellent probe of cluster pressure
distributions even at high redshifts. However, an important fraction of
clusters host submm and/or radio point sources, which can significantly affect
the reconstructed signal. Here we report on <20" resolution observations at 150
and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point
sources. We examine the morphology of the tSZ signal and compare it to other
datasets. The NIKA data are combined with Herschel satellite data to study the
SED of the submm point source contaminants. We then perform a joint
reconstruction of the intracluster medium (ICM) electronic pressure and density
by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact
of the radio and submm sources on the reconstructed pressure profile. We find
that large-scale pressure distribution is unaffected by the point sources
because of the resolved nature of the NIKA observations. The reconstructed
pressure in the inner region is slightly higher when the contribution of point
sources are removed. We show that it is not possible to set strong constraints
on the central pressure distribution without accurately removing these
contaminants. The comparison with X-ray only data shows good agreement for the
pressure, temperature, and entropy profiles, which all indicate that MACSJ1424
is a dynamically relaxed cool core system. The present observations illustrate
the possibility of measuring these quantities with a relatively small
integration time, even at high redshift and without X-ray spectroscopy.Comment: 15 pages, 17 figures, submitted to A&
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
- …
