8,923 research outputs found

    Numerical wave optics and the lensing of gravitational waves by globular clusters

    Full text link
    We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical lensing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability is insignificantly small.Comment: To appear in: Proceedings of the Eleventh Marcel Grossmann Meetin

    Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems

    Get PDF
    In Ollinger et al. (1), we reported that mass-based concentrations of nitrogen in forest canopies (%N) are positively associated with whole-canopy photosynthetic capacity and canopy shortwave albedo in temperate and boreal forests, the latter result stemming from a positive correlation between %N and canopy near infrared (NIR) reflectance. This finding is intriguing because a functional link between %N and NIR reflectance could indicate an influence of nitrogen cycling on surface energy exchange, and could provide a means for estimating %N using broad-band satellite sensors

    Femtolens Imaging of a Quasar Central Engine Using a Dwarf Star Telescope

    Get PDF
    We show that it is possible to image the structure of a distant quasar on scales of 1\sim 1\,AU by constructing a telescope which uses a nearby dwarf star as its ``primary lens'' together with a satellite-borne ``secondary''. The image produced by the primary is magnified by 105\sim 10^5 in one direction but is contracted by 0.5 in the other, and therefore contains highly degenerate one-dimensional information about the two-dimensional source. We discuss various methods for extracting information about the second dimension including ``femtolens interferometry'' where one measures the interference between different parts of the one-dimensional image with each other. Assuming that the satellite could be dispatched to a position along a star-quasar line of sight at a distance rr from the Sun, the nearest available dwarf-star primary is likely to be at \sim 15\,\pc\,(r/40\,\rm AU)^{-2}. The secondary should consist of a one-dimensional array of mirrors extending 700\sim 700\,m to achieve 1 AU resolution, or 100\sim 100\,m to achieve 4 AU resolution.Comment: 12 pages including 3 embedded figure

    Near-surface remote sensing of spatial and temporal variation in canopy phenology

    Get PDF
    There is a need to document how plant phenology is responding to global change factors, particularly warming trends. “Near-surface” remote sensing, using radiometric instruments or imaging sensors, has great potential to improve phenological monitoring because automated observations can be made at high temporal frequency. Here we build on previous work and show how inexpensive, networked digital cameras (“webcams”) can be used to document spatial and temporal variation in the spring and autumn phenology of forest canopies. We use two years of imagery from a deciduous, northern hardwood site, and one year of imagery from a coniferous, boreal transition site. A quantitative signal is obtained by splitting images into separate red, green, and blue color channels and calculating the relative brightness of each channel for “regions of interest” within each image. We put the observed phenological signal in context by relating it to seasonal patterns of gross primary productivity, inferred from eddy covariance measurements of surface–atmosphere CO2 exchange. We show that spring increases, and autumn decreases, in canopy greenness can be detected in both deciduous and coniferous stands. In deciduous stands, an autumn red peak is also observed. The timing and rate of spring development and autumn senescence varies across the canopy, with greater variability in autumn than spring. Interannual variation in phenology can be detected both visually and quantitatively; delayed spring onset in 2007 compared to 2006 is related to a prolonged cold spell from day 85 to day 110. This work lays the foundation for regional- to continental-scale camera-based monitoring of phenology at network observatory sites, e.g., National Ecological Observatory Network (NEON) or AmeriFlux

    The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States

    Get PDF
    Land cover and land use influence surface climate through differences in biophysical surface properties, including partitioning of sensible and latent heat (e.g., Bowen ratio), surface roughness, and albedo. Clusters of closely spaced eddy covariance towers (e.g., \u3c10 \u3ekm) over a variety of land cover and land use types provide a unique opportunity to study the local effects of land cover and land use on surface temperature. We assess contributions albedo, energy redistribution due to differences in surface roughness and energy redistribution due to differences in the Bowen ratio using two eddy covariance tower clusters and the coupled (land-atmosphere) Variable-Resolution Community Earth System Model. Results suggest that surface roughness is the dominant biophysical factor contributing to differences in surface temperature between forested and deforested lands. Surface temperature of open land is cooler (−4.8 °C to −0.05 °C) than forest at night and warmer (+0.16 °C to +8.2 °C) during the day at northern and southern tower clusters throughout the year, consistent with modeled calculations. At annual timescales, the biophysical contributions of albedo and Bowen ratio have a negligible impact on surface temperature, however the higher albedo of snow-covered open land compared to forest leads to cooler winter surface temperatures over open lands (−0.4 °C to −0.8 °C). In both the models and observation, the difference in mid-day surface temperature calculated from the sum of the individual biophysical factors is greater than the difference in surface temperature calculated from radiative temperature and potential temperature. Differences in measured and modeled air temperature at the blending height, assumptions about independence of biophysical factors, and model biases in surface energy fluxes may contribute to daytime biases

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus
    corecore