5,520 research outputs found
Transfer of Graphene with Protective Oxide Layers
Transfer of graphene, grown by Chemical Vapor Deposition (CVD), to a
substrate of choice, typically involves deposition of a polymeric layer
(typically, poly(methyl methacrylate, PMMA or polydimethylsiloxane, PDMS).
These polymers are quite hard to remove without leaving some residues behind.
Here we study a transfer of graphene with a protective thin oxide layer. The
thin oxide layer is grown by Atomic Deposition Layer (ALD) on the graphene
right after the growth stage on Cu foils. One can further aid the
oxide-graphene transfer by depositing a very thin polymer layer on top of the
composite (much thinner than the usual thickness) following by a more
aggressive polymeric removal methods, thus leaving the graphene intact. We
report on the nucleation growth process of alumina and hafnia films on the
graphene, their resulting strain and on their optical transmission. We suggest
that hafnia is a better oxide to coat the graphene than alumina in terms of
uniformity and defects.Comment: 13 pgs, 13 figure
The Economic Impact of Connecticut's Information Technology Industry
information technology, economic impact, Tornqvist index
Analysis of the Expected Shortfall of Aggregate Dependent Risks
We consider d identically and continuously distributed dependent risks X 1, , Xd . Our main result is a theorem on the asymptotic behaviour of expected shortfall for the aggregate risks: there is a constant cd such that for large u we have . Moreover we study diversification effects in two dimensions, similar to our Value-at-Risk studies in [2
Levels of self-consistency in the GW approximation
We perform calculations on atoms and diatomic molecules at different
levels of self-consistency and investigate the effects of self-consistency on
total energies, ionization potentials and on particle number conservation. We
further propose a partially self-consistent scheme in which we keep the
correlation part of the self-energy fixed within the self-consistency cycle.
This approximation is compared to the fully self-consistent results and to
the and the approximations. Total energies, ionization
potentials and two-electron removal energies obtained with our partially
self-consistent approximation are in excellent agreement with fully
self-consistent results while requiring only a fraction of the
computational effort. We also find that self-consistent and partially
self-consistent schemes provide ionization energies of similar quality as the
values but yield better total energies and energy differences.Comment: 11 pages, 3 figures, 3 table
- …
