161 research outputs found

    Synthesis of titanate nanostructures using amorphous precursor material and their adsorption/photocatalytic properties

    Full text link
    This paper reports on a new and swift hydrothermal chemical route to prepare titanate nanostructures (TNS) avoiding the use of crystalline TiO2 as starting material. The synthesis approach uses a commercial solution of TiCl3 as titanium source to prepare an amorphous precursor, circumventing the use of hazardous chemical compounds. The influence of the reaction temperature and dwell autoclave time on the structure and morphology of the synthesised materials was studied. Homogeneous titanate nanotubes with a high length/diameter aspect ratio were synthesised at 160^{\circ}C and 24 h. A band gap of 3.06\pm0.03 eV was determined for the TNS samples prepared in these experimental conditions. This value is red shifted by 0.14 eV compared to the band gap value usually reported for the TiO2 anatase. Moreover, such samples show better adsorption capacity and photocatalytic performance on the dye rhodamine 6G (R6G) photodegradation process than TiO2 nanoparticles. A 98% reduction of the R6G concentration was achieved after 45 minutes of irradiation of a 10 ppm dye aqueous solution and 1 g/L of TNS catalyst.Comment: 29 pages, 10 figures, accepted for publication in Journal of Materials Scienc

    Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    Get PDF
    INTRODUCTION: Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. METHODS: In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). RESULTS: The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. CONCLUSIONS: The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study

    A Medicinal Chemist’s Guide to Molecular Interactions

    Get PDF

    Stimulus responsive graphene scaffolds for tissue engineering

    Get PDF
    Tissue engineering (TE) is an emerging area that aims to repair damaged tissues and organs by combining different scaffold materials with living cells. Recently, scientists started to engineer a new generation of nanocomposite scaffolds able to mimic biochemical and biophysical mechanisms to modulate the cellular responses promoting the restoration of tissue structure or function. Due to its unique electrical, topographical and chemical properties, graphene is a material that holds a great potential for TE, being already considered as one of the best candidates for accelerating and guiding stem cell differentiations. Although this is a promising field there are still some challenges to overcome, such as the efficient control of the differentiation of the stem cells, especially in graphene-based microenvironments. Hence, this chapter will review the existing research related to the ability of graphene and its derivatives (graphene oxide and reduced graphene oxide) to induce stem cell differentiation into diverse lineages when under the influence of electrical, mechanical, optical and topographic stimulations

    Zirconium Doped Titania: Destruction of Warfare Agents and Photocatalytic Degradation of Orange 2 Dye

    No full text

    Monodispersed Spindle-like Particles of Titania

    Full text link
    Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009</jats:p

    Experimental Stapes Surgery

    No full text
    corecore