5,234 research outputs found
Summertime ozone at Mount Washington: Meteorological controls at the highest peak in the northeast
This study examined the synoptic and regional-scale meteorological controls on summertime O3 at Mount Washington, the highest peak (1910 m) in the northeastern United States. Analysis of air mass transport to Mount Washington was conducted for the summers of 1998–2003 using backward trajectories. Distinct patterns in air mass history were revealed using this approach that helped explain extreme variations in O3 mixing ratios. Most enhanced (≥90th percentile) and depleted (≤10th percentile) O3 events were short-lived and spread out over the summer months. Enhanced O3 events at Mount Washington were generally associated with westerly transport, while depleted events corresponded to northwesterly transport. Periods of O3 greater than 80 ppbv during nighttime periods coincided with westerly (71%) and southwesterly (29%) transport. Periods of elevated O3 commonly occurred during regional warm sector flow or on the western edge of a surface anticyclone. Our analysis also identified a stratospheric contribution to a small percentage (∼5%) of extreme O3 events at the site, but more evidence is required to establish the significance of the contribution to background O3levels in this region
A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada
During early July 2002, wildfires burned ∼1 × 106 ha of forest in Quebec, Canada. The resultant smoke plume was seen in satellite images blanketing the U.S. east coast. Concurrently, extremely high CO mixing ratios were observed at the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) network sites in New Hampshire and at the Harvard Forest Environmental Measurement Site (HFEMS) in Massachusetts. The CO enhancements were on the order of 525–1025 ppbv above low mixing ratio conditions on surrounding days. A biomass burning source for the event was confirmed by concomitant enhancements in aerosol K+, NH4+, NO3−, and C2O42− mixing ratios at the AIRMAP sites. Additional data for aerosol K, organic carbon, and elemental carbon from the Interagency Monitoring of Protected Visual Environments network and CO data from Environmental Protection Agency sites indicated that the smoke plume impacted much of the U.S. east coast, from Maine to Virginia. CO mixing ratios and K concentrations at stations with 10-year or longer records suggested that this was the largest biomass burning plume to impact the U.S. east coast in over a decade. Furthermore, CO mixing ratios and aerosol particles with diameters 2.5) mass and scattering coefficients from the AIRMAP network and HFEMS indicated that this event was comparable to the large anthropogenic combustion and haze events which intermittently impact rural New England. The degree of enhancement of O3, NOy, NO3−, NH4+, and SO42− in the biomass plume showed significant variation with elevation and latitude that is attributed to variations in transport and surface depositional processes
Angular velocity distribution of a granular planar rotator in a thermalized bath
The kinetics of a granular planar rotator with a fixed center undergoing
inelastic collisions with bath particles is analyzed both numerically and
analytically by means of the Boltzmann equation. The angular velocity
distribution evolves from quasi-gaussian in the Brownian limit to an algebraic
decay in the limit of an infinitely light particle. In addition, we compare
this model with a planar rotator with a free center. We propose experimental
tests that might confirm the predicted behaviors.Comment: 10 Pages, 9 Figure
Aerosol major ion record at Mount Washington
This study examined the seasonal cycles and regional-scale meteorological controls on the chemical properties of bulk aerosols collected from 1999 to 2004 at Mount Washington, the highest peak in the northeastern United States. The concentrations of NH4+ and SO42− peaked during summer months. The pattern for aerosol NO3− was more complicated with relatively high median concentrations characterizing spring and summer months, but with major elevated events occurring during fall, winter, and spring. The seasonal relationship between NH4+ and SO42− indicated that during warmer months a mixture of (NH4)2SO4 and NH4HSO4 was present, while it was mainly the latter in winter. More acidity and higher concentrations of the major species were generally associated with winds from the southwest and west sectors. The highest (≥95th percentile) concentrations of SO42− and NH4+ were associated with air mass transport from major upwind source regions in the Midwest and along the eastern seaboard. The ionic composition and seasonal cycle observed at Mount Washington were similar to those measured at other northeastern sites, but the range and average concentrations were much lower. These differences were exaggerated during wintertime. Included in this paper are several Eulerian case studies of SO2 conversion to SO42− during transit from Whiteface Mountain, New York, to Mount Washington. The calculations suggest a gas-phase SO2 oxidation rate of ∼1–2% per hour and demonstrate the possibility of using these two sites to investigate the chemical evolution of air masses as they move from Midwestern source regions to northern New England
Evaluation of Dynamic Cell Processes and Behavior Using Video Bioinformatics Tools
Just as body language can reveal a person’s state of well-being, dynamic changes in cell behavior and
morphology can be used to monitor processes in cultured cells. This chapter discusses how CL-Quant
software, a commercially available video bioinformatics tool, can be used to extract quantitative data on:
(1) growth/proliferation, (2) cell and colony migration, (3) reactive oxygen species (ROS) production, and
(4) neural differentiation. Protocols created using CL-Quant were used to analyze both single cells and
colonies. Time-lapse experiments in which different cell types were subjected to various chemical
exposures were done using Nikon BioStations. Proliferation rate was measured in human embryonic stem
cell colonies by quantifying colony area (pixels) and in single cells by measuring confluency (pixels).
Colony and single cell migration were studied by measuring total displacement (distance between the
starting and ending points) and total distance traveled by the colonies/cells. To quantify ROS production,
cells were pre-loaded with MitoSOX Red™, a mitochondrial ROS (superoxide) indicator, treated with
various chemicals, then total intensity of the red fluorescence was measured in each frame. Lastly, neural
stem cells were incubated in differentiation medium for 12 days, and time lapse images were collected
daily. Differentiation of neural stem cells was quantified using a protocol that detects young neurons. CLQuant
software can be used to evaluate biological processes in living cells, and the protocols developed in
this project can be applied to basic research and toxicological studies, or to monitor quality control in
culture facilities
PT-Symmetric Talbot Effects
We show that complex PT-symmetric photonic lattices can lead to a new class
of self-imaging Talbot effects. For this to occur, we find that the input field
pattern, has to respect specific periodicities which are dictated by the
symmetries of the system. While at the spontaneous PT-symmetry breaking point,
the image revivals occur at Talbot lengths governed by the characteristics of
the passive lattice, at the exact phase it depends on the gain and loss
parameter thus allowing one to control the imaging process.Comment: 5 pages, 3 figure
Random sequential adsorption of shrinking or spreading particles
We present a model of one-dimensional irreversible adsorption in which
particles once adsorbed immediately shrink to a smaller size or expand to a
larger size. Exact solutions for the fill factor and the particle number
variance as a function of the size change are obtained. Results are compared
with approximate analytical solutions.Comment: 9 pages, 8 figure
Factorization of Numbers with the temporal Talbot effect: Optical implementation by a sequence of shaped ultrashort pulses
We report on the successful operation of an analogue computer designed to
factor numbers. Our device relies solely on the interference of classical light
and brings together the field of ultrashort laser pulses with number theory.
Indeed, the frequency component of the electric field corresponding to a
sequence of appropriately shaped femtosecond pulses is determined by a Gauss
sum which allows us to find the factors of a number
Swain Committee Report
Letter addressed to the Secretary of the Navy, the Honorable Josephus H. Daniels, from the Committee appointed by the President of the Society for the Promotion of Engineering Education, to visit the U.S. Naval Academy in Annapolis, MD. The purpose was to evaluate the work of the Post Graduate School. The committee recommended enlarging the enrollment of the Post Graduate School and providing for appropriate funding for buildings, equipment and curricula
Transport and dispersion of atmospheric sulphur dioxide from an industrial coastal area during a sea-breeze event
International audienceExperimental and modelling results of the dynamics of a sea-breeze event and its effects on the three-dimensional (3-D) redistribution of the gaseous SO2 are presented within the framework of a particularly flat and industrialized coastal area of the North Sea. The measurements were carried out at ground level with the stations of the local air quality monitoring agency and with two optical remote sensing instruments. The remote sensing setup consisted of a lidar and a sodar whose measurements allowed us to determine the layers of the lower troposphere during a sea-breeze event up to 1400 m height. The experimental results and measurements of industrial SO2 in the atmosphere are compared to the numerical simulations of the 3-D atmospheric non-hydrostatic chemistry model Meso-NH-C. The transport and the dispersion of gaseous SO2 are studied above the neighbouring industrial and urban areas. We show how the evolution and the redistribution of the SO2 concentrations at ground level are related to the structure and the dynamics of the sea breeze. The gaseous SO2 is brought back inland as soon as the sea breeze commences, mixed inner the thermal internal boundary layer and transported inland by the gravity current up to the sea-breeze front, where gases and particles are uplifted. The elevation of the polluted air masses by the sea-breeze system favours the nucleation of the emitted compounds due to the increase of the relative humidity in the uplifted layer. We show how the dynamical conditions during and after the sea breeze lead to storage of SO2 near and above the emitting industrial coastal areas, and favour the formation of acidic aerosol particles
- …
