27 research outputs found

    A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity.

    Get PDF
    Heterozygosity for human () dominant-negative (DN) mutations underlies an autosomal dominant form of hyper-immunoglobulin E syndrome (HIES). We describe patients with an autosomal recessive form of HIES due to loss-of-function mutations of a previously uncharacterized gene, ZNF341 is a transcription factor that resides in the nucleus, where it binds a specific DNA motif present in various genes, including the promoter. The patients\u27 cells have low basal levels of STAT3 mRNA and protein. The autoinduction of STAT3 production, activation, and function by STAT3-activating cytokines is strongly impaired. Like patients with DN mutations, ZNF341-deficient patients lack T helper 17 (T17) cells, have an excess of T2 cells, and have low memory B cells due to the tight dependence of STAT3 activity on ZNF341 in lymphocytes. Their milder extra-hematopoietic manifestations and stronger inflammatory responses reflect the lower ZNF341 dependence of STAT3 activity in other cell types. Human ZNF341 is essential for the transcription-dependent autoinduction and sustained activity of STAT3

    Vitamin A derivatives in the prevention and treatment of human cancer.

    Full text link
    Vitamin A is essential for normal cellular growth and differentiation. A vast amount of laboratory data have clearly demonstrated the potent antiproliferative and differentiation-inducing effects of vitamin A and the synthetic analogues (retinoids). Recent in-vitro work has led to the exciting proposal that protein kinase-C may be centrally involved in many of retinoids' anticancer actions including the effects on ornithine decarboxylase induction, intracellular polyamine levels, and epidermal growth factor receptor number. Several intervention trials have clearly indicated that natural vitamin A at clinically tolerable doses has only limited activity against human neoplastic processes. Therefore, clinical work has focused on the synthetic derivatives with higher therapeutic indexes. In human cancer prevention, retinoids have been most effective for skin diseases, including actinic keratosis, keratoacanthoma, epidermodysplasia verruciformis, dysplastic nevus syndrome, and basal cell carcinoma. Several noncutaneous premaligancies, however, are currently receiving more attention in retinoid trials. Definite retinoid activity has been documented in oral leukoplakia, laryngeal papillomatosis, superficial bladder carcinoma, cervical dysplasia, bronchial metaplasia, and preleukemia. Significant therapeutic advances are also occurring with this class of drugs in some drug-resistant malignancies and several others that have become refractory, including advanced basal cell cancer, mycosis fungoides, melanoma, acute promyelocytic leukemia, and squamous cell carcinoma of the skin and of the head and neck. This report comprehensively presents the clinical data using retinoids as anticancer agents in human premalignant disorders and outlines the ongoing and planned studies with retinoids in combination and adjuvant therapy

    Hypermethylation of the progesterone receptor A in constitutive antiprogestin-resistant mouse mammary carcinomas

    Get PDF
    Most breast carcinomas that are estrogen receptor (ER) and progesterone receptor (PR) positive respond initially to an endocrine therapy, but over time, they develop resistance (acquired hormone resistance). Others, however, fail to respond from the beginning (constitutive resistance). Overcoming hormone resistance is one of the major desirable aims in breast cancer treatment. Using the medroxyprogesterone acetate (MPA)-induced breast cancer mouse model, we have previously demonstrated that antiprogestin-responsive tumors show a higher expression level of PR isoform A (PRA) than PR isoform B (PRB), while tumors with constitutive or acquired resistance show a higher expression level of PRB. The aim of this study was to investigate whether PRA silencing in resistant tumors was due to PRA methylation. The CpG islands located in the PRA promoter and the first exon were studied by methylation-specific PCR (MSP) in six different tumors: two antiprogestin-responsive, two constitutive-resistant, and two with acquired resistance. Only in constitutive-resistant tumors, PRA expression was silenced by DNA methylation. Next, we evaluated the effect of a demethylating agent, 5-aza-2´-deoxycytidine, on PRA expression and antiprogestin responsiveness. In constitutive-resistant tumors, 5-aza-2´-deoxycytidine treatment in vitro and in vivo restored PRA expression and antiprogestin RU-486 responsiveness. Furthermore, high levels of DNA methyltransferase (Dnmts) 1 and 3b were detected in these tumors. In conclusion, our results suggest that methyltransferase inhibitors in combination with antiprogestins may be effective in the treatment of constitutive-resistant carcinomas with a high DNA methyltransferase level.Fil: Wargon, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Fernandez, Sandra V.. Fox Chase Cancer Center. Breast Cancer Research Laboratory; Estados UnidosFil: Goin, Mercedes. Laboratorios Beta S.A.; ArgentinaFil: Giulianelli, Sebastian Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Russo, José. Fox Chase Cancer Center. Breast Cancer Research Laboratory; Estados UnidosFil: Lanari, Claudia Lee Malvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentin

    Introductory study of the palynology of the Narrabeen group

    Get PDF
    Less than a third of adults patients with acute myeloid leukemia (AML) are cured by current treatments, emphasizing the need for new approaches to therapy. We previously demonstrated that besides playing a role in drug-resistant leukemia cell lines, multidrug resistance protein 4 (MRP4/ABCC4) regulates leukemia cell proliferation and differentiation through the endogenous MRP4/ABCC4 substrate, cAMP. Here, we studied the role of MRP4/ABCC4 in tumor progression in a mouse xenograft model and in leukemic stem cells (LSCs) differentiation. We found a decrease in the mitotic index and an increase in the apoptotic index associated with the inhibition of tumor growth when mice were treated with rolipram (PDE4 inhibitor) and/or probenecid (MRPs inhibitor). Genetic silencing and pharmacologic inhibition of MRP4 reduced tumor growth. Furthermore, MRP4 knockdown induced cell cycle arrest and apoptosis in vivo. Interestingly, when LSC population was isolated, we observed that increased cAMP levels and MRP4/ABCC4 blockade resulted in LSCs differentiation. Taken together, our findings show that MRP4/ABCC4 has a relevant role in tumor growth and apoptosis and in the eradication of LSCs, providing the basis for a novel promising target in AML therapy
    corecore