385 research outputs found
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
Decoherence of molecular wave packets in an anharmonic potential
The time evolution of anharmonic molecular wave packets is investigated under
the influence of the environment consisting of harmonic oscillators. These
oscillators represent photon or phonon modes and assumed to be in thermal
equilibrium. Our model explicitly incorporates the fact that in the case of a
nonequidistant spectrum the rates of the environment induced transitions are
different for each transition. The nonunitary time evolution is visualized by
the aid of the Wigner function related to the vibrational state of the
molecule. The time scale of decoherence is much shorter than that of
dissipation, and gives rise to states which are mixtures of localized states
along the phase space orbit of the corresponding classical particle. This
behavior is to a large extent independent of the coupling strength, the
temperature of the environment and also of the initial state.Comment: 7 pages, 4 figure
Radio Observations of the January 20, 2005 X-Class Event
We present a multi-frequency and multi-instrument study of the 20 January
2005 event. We focus mainly on the complex radio signatures and their
association with the active phenomena taking place: flares, CMEs, particle
acceleration and magnetic restructuring. As a variety of energetic particle
accelerators and sources of radio bursts are present, in the flare-ejecta
combination, we investigate their relative importance in the progress of this
event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz
frequency coverage, were used to track the evolution of the event from the low
corona to the interplanetary space; these were supplemented with SXR, HXR and
gamma-ray recordings. The observations were compared with the expected radio
signatures and energetic-particle populations envisaged by the {Standard
Flare--CME model and the reconnection outflow termination shock model. A proper
combination of these mechanisms seems to provide an adequate model for the
interpretation of the observational data.Comment: Accepted for publication in Solar Physic
What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models
One of the major discoveries of the Extreme ultraviolet Imaging Telescope
(EIT) on SOHO were intensity enhancements propagating over a large fraction of
the solar surface. The physical origin(s) of the so-called `EIT' waves is still
strongly debated. They are considered to be either wave (primarily fast-mode
MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in
understanding the nature of EUV waves lies with the limitations of the EIT
observations which have been used almost exclusively for their study. Their
limitations are largely overcome by the SECCHI/EUVI observations on-board the
STEREO mission. The EUVI telescopes provide high cadence, simultaneous
multi-temperature coverage, and two well-separated viewpoints. We present here
the first detailed analysis of an EUV wave observed by the EUVI disk imagers on
December 07, 2007 when the STEREO spacecraft separation was .
Both a small flare and a CME were associated with the wave cadence, and single
temperature and viewpoint coverage. These limitations are largely overcome by
the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes
provide high cadence, simultaneous multi-temperature coverage, and two
well-separated viewpoints. Our findings give significant support for a
fast-mode interpretation of EUV waves and indicate that they are probably
triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres
Development of the SIOPE DIPG network, registry and imaging repository : a collaborative effort to optimize research into a rare and lethal disease
Diffuse intrinsic pontine glioma (DIPG) is a rare and deadly childhood malignancy. After 40 years of mostly single-center, often non-randomized trials with variable patient inclusions, there has been no improvement in survival. It is therefore time for international collaboration in DIPG research, to provide new hope for children, parents and medical professionals fighting DIPG. In a first step towards collaboration, in 2011, a network of biologists and clinicians working in the field of DIPG was established within the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group: the SIOPE DIPG Network. By bringing together biomedical professionals and parents as patient representatives, several collaborative DIPG-related projects have been realized. With help from experts in the fields of information technology, and legal advisors, an international, web-based comprehensive database was developed, The SIOPE DIPG Registry and Imaging Repository, to centrally collect data of DIPG patients. As for April 2016, clinical data as well as MR-scans of 694 patients have been entered into the SIOPE DIPG Registry/Imaging Repository. The median progression free survival is 6.0 months (95% Confidence Interval (CI) 5.6-6.4 months) and the median overall survival is 11.0 months (95% CI 10.5-11.5 months). At two and five years post-diagnosis, 10 and 2% of patients are alive, respectively. The establishment of the SIOPE DIPG Network and SIOPE DIPG Registry means a paradigm shift towards collaborative research into DIPG. This is seen as an essential first step towards understanding the disease, improving care and (ultimately) cure for children with DIPG.Peer reviewe
- …
