3,537 research outputs found

    A 3-D Track-Finding Processor for the CMS Level-1 Muon Trigger

    Full text link
    We report on the design and test results of a prototype processor for the CMS Level-1 trigger that performs 3-D track reconstruction and measurement from data recorded by the cathode strip chambers of the endcap muon system. The tracking algorithms are written in C++ using a class library we developed that facilitates automatic conversion to Verilog. The code is synthesized into firmware for field-programmable gate-arrays from the Xilinx Virtex-II series. A second-generation prototype has been developed and is currently under test. It performs regional track-finding in a 60 degree azimuthal sector and accepts 3 GB/s of input data synchronously with the 40 MHz beam crossing frequency. The latency of the track-finding algorithms is expected to be 250 ns, including geometrical alignment correction of incoming track segments and a final momentum assignment based on the muon trajectory in the non-uniform magnetic field in the CMS endcaps.Comment: 7 pages, 5 figures, proceedings for the conference on Computing in High Energy and Nuclear Physics, March 24-28 2003, La Jolla, Californi

    Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+

    Full text link
    We report the first observation of the Cabibbo-suppressed charm baryon decay Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ -> X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) = 0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +- 0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let

    First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+

    Full text link
    We report the first observation of a charm-strange meson DsJ(2632) at a mass of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9 MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2 at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta) is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by PR

    First Observation of the Doubly Charmed Baryon Xi_cc^+

    Full text link
    We observe a signal for the doubly charmed baryon Xi_cc^+ in the charged decay mode Xi_cc^+ --> Lambda_c^+ K- pi+ in data from SELEX, the charm hadro-production experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1 +/- 0.5 events, a statistical significance of 6.3sigma. The observed mass of this state is (3519 +/- 1) MeV/c^2. The Gaussian mass width of this state is 3MeV/c^2, consistent with resolution; its lifetime is less than 33fsec at 90% confidence.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    First Measurement of pi e -> pi e gamma Pion Virtual Compton Scattering

    Full text link
    Pion Virtual Compton Scattering (VCS) via the reaction pi e --> pi e gamma was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c pi- beam incident on target atomic electrons, detecting the incident pi- and the final state pi-, electron and gamma. Theoretical predictions based on chiral perturbation theory are incorporated into a Monte Carlo simulation of the experiment and are compared to the data. The number of reconstructed events (9) and their distribution with respect to the kinematic variables (for the kinematic region studied) are in reasonable accord with the predictions. The corresponding pi- VCS experimental cross section is sigma=38.8+-13 nb, in agreement with the theoretical expectation sigma=34.7 nb.Comment: 10 pages, 12 figures, 4 tables, 25 references, SELEX home page is http://fn781a.fnal.gov/, revised July 21, 2002 in response to journal referee Comment

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
    corecore