1,922 research outputs found
Recurrence for persistent random walks in two dimensions
We discuss the question of recurrence for persistent, or Newtonian, random
walks in Z^2, i.e., random walks whose transition probabilities depend both on
the walker's position and incoming direction. We use results by Toth and
Schmidt-Conze to prove recurrence for a large class of such processes,
including all "invertible" walks in elliptic random environments. Furthermore,
rewriting our Newtonian walks as ordinary random walks in a suitable graph, we
gain a better idea of the geometric features of the problem, and obtain further
examples of recurrence.Comment: 20 pages, 7 figure
Methane Clathrate Hydrate Prospecting
A method of prospecting for methane has been devised. The impetus for this method lies in the abundance of CH4 and the growing shortages of other fuels. The method is intended especially to enable identification of subpermafrost locations where significant amounts of methane are trapped in the form of methane gas hydrate (CH4(raised dot)6H2O). It has been estimated by the U.S. Geological Survey that the total CH4 resource in CH4(raised dot) 6H2O exceeds the energy content of all other fossil fuels (oil, coal, and natural gas from non-hydrate sources). Also, CH4(raised dot)6H2O is among the cleanest-burning fuels, and CH4 is the most efficient fuel because the carbon in CH4 is in its most reduced state. The method involves looking for a proxy for methane gas hydrate, by means of the combination of a thermal-analysis submethod and a field submethod that does not involve drilling. The absence of drilling makes this method easier and less expensive, in comparison with prior methods of prospecting for oil and natural gas. The proposed method would include thermoprospecting in combination with one more of the other non-drilling measurement techniques, which could include magneto-telluric sounding and/or a subsurface-electrical-resistivity technique. The method would exploit the fact that the electrical conductivity in the underlying thawed region is greater than that in the overlying permafrost
Medical card of a pulmonary tuberculosis in-patient
ИСТОРИЯ БОЛЕЗНИОБСЛЕДОВАНИЕ БОЛЬНОГОТУБЕРКУЛЕЗ ЛЕГКИХУЧЕБНО-МЕТОДИЧЕСКИЕ ПОСОБИЯФТИЗИОПУЛЬМОНОЛОГИЯУчебно-методическое пособие предназначено для самостоятельной подготовки к курации больных в клинике и написанию учебной истории болезни
Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates
Underground sequestration has been proposed as a novel method of permanent disposal of harmful gases emitted into the atmosphere as a result of human activity. The method was conceived primarily for disposal of carbon dioxide (CO2, greenhouse gas causing global warming), but could also be applied to CO, H2S, NOx, and chorofluorocarbons (CFCs, which are super greenhouse gases). The method is based on the fact that clathrate hydrates (e.g., CO2 6H2O) form naturally from the substances in question (e.g., CO2) and liquid water in the pores of sub-permafrost rocks at stabilizing pressures and temperatures. The proposed method would be volumetrically efficient: In the case of CO2, each volume of hydrate can contain as much as 184 volumes of gas. Temperature and pressure conditions that favor the formation of stable clathrate hydrates exist in depleted oil reservoirs that lie under permafrost. For example, CO2-6H2O forms naturally at a temperature of 0 C and pressure of 1.22 MPa. Using this measurement, it has been calculated that the minimum thickness of continuous permafrost needed to stabilize CO2 clathrate hydrate is only about 100 m, and the base of the permafrost is known to be considerably deeper at certain locations (e.g., about 600 m at Prudhoe Bay in Alaska). In this disposal method, the permafrost layers over the reservoirs would act as impermeable lids that would prevent dissociation of the clathrates and diffusion of the evolved gases up through pores
Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset
Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions. <br><br> To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP) group. <br><br> In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM) stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains
The form factors from Analyticity and Unitarity
Analyticity and unitarity techniques are employed to obtain bounds on the
shape parameters of the scalar and vector form factors of semileptonic
decays. For this purpose we use vector and scalar correlators evaluated in
pQCD, a low energy theorem for scalar form factor, lattice results for the
ratio of kaon and pion decay constants, chiral perturbation theory calculations
for the scalar form factor at the Callan-Treiman point and experimental
information on the phase and modulus of form factors up to an energy
\tin=1 {\rm GeV}^2. We further derive regions on the real axis and in the
complex-energy plane where the form factors cannot have zeros.Comment: 6 pages, 5 figures; Seminar given at DAE-BRNS Workshop on Hadron
Physics Bhabha Atomic Research Centre, Mumbai, India October 31-November 4,
2011, submitted to Proceeding
Prospects for the Bc Studies at LHCb
We discuss the motivations and perspectives for the studies of the mesons of
the (bc) family at LHCb. The description of production and decays at LHC
energies is given in details. The event yields, detection efficiencies, and
background conditions for several Bc decay modes at LHCb are estimated.Comment: 20 pages, 5 eps-figure
Study of He+C Elastic Scattering Using a Microscopic Optical Potential
The He+C elastic scattering data at beam energies of 3, 38.3 and
41.6 MeV/nucleon are studied utilizing the microscopic optical potentials
obtained by a double-folding procedure and also by using those inherent in the
high-energy approximation. The calculated optical potentials are based on the
neutron and proton density distributions of colliding nuclei established in an
appropriate model for He and obtained from the electron scattering form
factors for C. The depths of the real and imaginary parts of the
microscopic optical potentials are considered as fitting parameters. At low
energy the volume optical potentials reproduce sufficiently well the
experimental data. At higher energies, generally, additional surface terms
having form of a derivative of the imaginary part of the microscopic optical
potential are needed. The problem of ambiguity of adjusted optical potentials
is resolved requiring the respective volume integrals to obey the determined
dependence on the collision energy. Estimations of the Pauli blocking effects
on the optical potentials and cross sections are also given and discussed.
Conclusions on the role of the aforesaid effects and on the mechanism of the
considered processes are made.Comment: 12 pages, 9 figures, accepted for publication in Physical Review
- …
