351 research outputs found
Electroproduction, photoproduction, and inverse electroproduction of pions in the first resonance region
Methods are set forth for determining the hadron electromagnetic structure in
the sub--threshold timelike region of the virtual-photon ``mass'' and
for investigating the nucleon weak structure in the spacelike region from
experimental data on the process at low energies. These
methods are formulated using the unified description of photoproduction,
electroproduction, and inverse electroproduction of pions in the first
resonance region in the framework of the dispersion-relation model and on the
basis of the model-independent properties of inverse electroproduction.
Applications of these methods are also shown.Comment: The revised published version; Revtex4, 18 pages, 6 figure
Axial anomaly and the interplay of quark loops with pseudoscalar and vector mesons in the gamma* --> pi+ pi0 pi- process
Motivated by the ongoing measurements of the Primakoff process pi- gamma* -->
pi- pi0 by COMPASS collaboration at CERN, the transition form factor for the
canonical anomalous process gamma* --> pi+ pi0 pi- is calculated in a
constituent quark loop model. The simplest contribution to this process is the
quark "box" amplitude. In the present paper we also explicitly include the
vector meson degrees of freedom, i.e., the rho and the omega, thus giving rise
to additional, resonant contributions. We find that in order to satisfy the
axial anomaly result, a further subtraction in the resonant part is needed. The
results are then compared with the vector meson dominance model as well as the
Dyson--Schwinger calculations, the chiral perturbation theory result, and the
available data.Comment: 21 pages, 8 eps figures, revtex4, a factor of 2 in resonant
contribution corrected, three figures revised and one added, discussion
enlarged and references adde
Where is the pseudoscalar glueball ?
The pseudoscalar mesons with the masses higher than 1 GeV are assumed to
belong to the meson decuplet including the glueball as the basis state
supplementing the standard nonet of light states
. The decuplet is investigated by means of an algebraic approach based
on hypothesis of vanishing the exotic commutators of "charges" and
their time derivatives. These commutators result in a system of equations
determining contents of the isoscalar octet state in the physical isoscalar
mesons as well as the mass formula including all masses of the decuplet:
, K(1460), , and . The physical
isoscalar mesons , are expressed as superpositions of the "ideal"
states ( and ) and the glueball with the mixing
coefficient matrix following from the exotic commutator restrictions. Among
four one-parameter families of the calculated mixing matrix (numerous solutions
result from bad quality of data on the and K(1460) masses) there is
one family attributing the glueball-dominant composition to the
meson. Similarity between the pseudoscalar and scalar decuplets, analogy
between the whole spectra of the and mesons and affinity of
the glueball with excited states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors
withdraws his nam
Interplay among transversity induced asymmetries in hadron leptoproduction
In the fragmentation of a transversely polarized quark several left-right
asymmetries are possible for the hadrons in the jet. When only one unpolarized
hadron is selected, it exhibits an azimuthal modulation known as Collins
effect. When a pair of oppositely charged hadrons is observed, three
asymmetries can be considered, a di-hadron asymmetry and two single hadron
asymmetries. In lepton deep inelastic scattering on transversely polarized
nucleons all these asymmetries are coupled with the transversity distribution.
From the high statistics COMPASS data on oppositely charged hadron-pair
production we have investigated for the first time the dependence of these
three asymmetries on the difference of the azimuthal angles of the two hadrons.
The similarity of transversity induced single and di-hadron asymmetries is
discussed. A new analysis of the data allows to establish quantitative
relationships among them, providing for the first time strong experimental
indication that the underlying fragmentation mechanisms are all driven by a
common physical process.Comment: 6 figure
Measurement of the charged-pion polarisability
The COMPASS collaboration at CERN has investigated pion Compton scattering,
, at centre-of-mass energy below 3.5 pion
masses. The process is embedded in the reaction
, which is initiated by
190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons
is selected by isolating the sharp Coulomb peak observed at smallest momentum
transfers, \,(GeV/). From a sample of 63\,000 events the
pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\
0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times
10^{-4}\,\mbox{fm}^3\alpha_\pi=-\beta_\pi$, which
relates the electric and magnetic dipole polarisabilities. It is the most
precise measurement of this fundamental low-energy parameter of strong
interaction, that has been addressed since long by various methods with
conflicting outcomes. While this result is in tension with previous dedicated
measurements, it is found in agreement with the expectation from chiral
perturbation theory. An additional measurement replacing pions by muons, for
which the cross-section behavior is unambigiously known, was performed for an
independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
Resonance Production and S-wave in at 190 GeV/c
The COMPASS collaboration has collected the currently largest data set on
diffractively produced final states using a negative pion
beam of 190 GeV/c momentum impinging on a stationary proton target. This data
set allows for a systematic partial-wave analysis in 100 bins of three-pion
mass, GeV/c , and in 11 bins of the reduced
four-momentum transfer squared, (GeV/c) . This
two-dimensional analysis offers sensitivity to genuine one-step resonance
production, i.e. the production of a state followed by its decay, as well as to
more complex dynamical effects in nonresonant production. In this paper,
we present detailed studies on selected partial waves with , , , , and . In these waves, we observe
the well-known ground-state mesons as well as a new narrow axial-vector meson
decaying into . In addition, we present the results
of a novel method to extract the amplitude of the subsystem with
in various partial waves from the
data. Evidence is found for correlation of the and
appearing as intermediate isobars in the decay of the known
and .Comment: 96 page
- …
