3,450 research outputs found

    Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009

    Full text link
    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of galactic protons were recorded at Earth in late 2009 in contrast to expectations. Proton spectra observed for 2006 to 2009 from the PAMELA cosmic ray detector on-board the Resurs-DK1 satellite are presented together with the solutions of a comprehensive numerical model for the solar modulation of cosmic rays. The model is used to determine what mechanisms were mainly responsible for the modulation of protons during this period, and why the observed spectrum for 2009 was the highest ever recorded. From mid-2006 until December 2009 we find that the spectra became significantly softer because increasingly more low energy protons had reached Earth. To simulate this effect, the rigidity dependence of the diffusion coefficients had to decrease significantly below ~3 GeV. The modulation minimum period of 2009 can thus be described as relatively more "diffusion dominated" than previous solar minima. However, we illustrate that drifts still had played a significant role but that the observable modulation effects were not as well correlated with the waviness of the heliospheric current sheet as before. Protons still experienced global gradient and curvature drifts as the heliospheric magnetic field had decreased significantly until the end of 2009, in contrast to the moderate decreases observed during previous minimum periods. We conclude that all modulation processes contributed to the observed increases in the proton spectra for this period, exhibiting an intriguing interplay of these major mechanisms

    Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue

    Get PDF
    Increased physical activity is an optimal way to maintain a good health. During exercise, triacylglycerols, an energy reservoir in adipose tissue, are hydrolyzed to free fatty acids (FAs) which are then released to the circulation, providing a fuel for working muscles. Thus, regular physical activity leads to a reduction of adipose tissue mass and improves metabolism. However, the reduction of lipid reservoir is also associated with many other interesting changes in adipose tissue FA metabolism. For example, a prolonged exercise contributes to a decrease in lipoprotein lipase activity and resultant reduction of FA uptake. This results in the improvement of mitochondrial function and upregulation of enzymes involved in the metabolism of polyunsaturated fatty acids. The exercise-induced changes in adipocyte metabolism are associated with modifications of FA composition. The modifications are adipose tissue depot-specific and follow different patterns in visceral and subcutaneous adipose tissue. Moreover, exercise affects adipokine release from adipose tissue, and thus, may mitigate inflammation and improve insulin sensitivity. Another consequence of exercise is the recently described phenomenon of adipose tissue “beiging,” i.e., a switch from energy-storing white adipocyte phenotype to thermogenic FA oxidizing beige adipocytes. This process is regulated by myokines released during the exercise. In this review, we summarize published evidence for the exercise-related changes in FA metabolism and adipokine release in adipose tissue, and their potential contribution to beneficial cardiovascular and metabolic effects of physical activit

    Detection of the high energy component of Jovian electrons in Low Earth Orbit with the PAMELA experiment

    Full text link
    The PAMELA experiment is devoted to the study of cosmic rays in Low Earth Orbit with an apparatus optimized to perform a precise determination of the galactic antimatter component of c.r. It is constituted by a number of detectors built around a permanent magnet spectrometer. PAMELA was launched in space on June 15th 2006 on board the Russian Resurs-DK1 satellite for a mission duration of three years. The characteristics of the detectors, the long lifetime and the orbit of the satellite, will allow to address several aspects of cosmic-ray physics. In this work we discuss the observational capabilities of PAMELA to detect the electron component above 50 MeV. The magnetic spectrometer allows a detailed measurement of the energy spectrum of electrons of galactic and Jovian origin. Long term measurements and correlations with Earth-Jupiter 13 months synodic period will allow to separate these two contributions and to measure the primary electron Jovian component, dominant in the 50-70 MeV energy range. With this technique it will also be possible to study the contribution to the electron spectrum of Jovian e- reaccelerated up to 2 GeV at the Solar Wind Termination Shock.Comment: On behalf of PAMELA collaboration. Accepted for publication on Advances in Space Researc

    Nandrolone decanoate interferes with testosterone biosynthesis altering blood-testis barrier components

    Get PDF
    The aim of this study was to investigate whether nandrolone decanoate (ND) use affects testosterone production and testicular morphology in a model of trained and sedentary mice. A group of mice underwent endurance training while another set led a sedentary lifestyle and were freely mobile within cages. All experimental groups were treated with either ND or peanut oil at different doses for 6 weeks. Testosterone serum levels were measured via liquid chromatography-mass spectrometry. Western blot analysis and quantitative real-time PCR were utilized to determine gene and protein expression levels of the primary enzymes implicated in testosterone biosynthesis and gene expression levels of the blood-testis barrier (BTB) components. Immunohistochemistry and immunofluorescence were conducted for testicular morphological evaluation. The study demonstrated that moderate to high doses of ND induced a diminished serum testosterone level and altered the expression level of the key steroidogenic enzymes involved in testosterone biosynthesis. At the morphological level, ND induced degradation of the BTB by targeting the tight junction protein-1 (TJP1). ND stimulation deregulated metalloproteinase-9, metalloproteinase-2 (MMP-2) and the tissue inhibitor of MMP-2. Moreover, ND administration resulted in a mislocalization of mucin-1. In conclusion, ND abuse induces a decline in testosterone production that is unable to regulate the internalization and redistribution of TJP1 and may induce the deregulation of other BTB constituents via the inhibition of MMP-2. ND may well be considered as both a potential inducer of male infertility and a potential risk factor to a low endogenous bioavailable testosterone

    Editorial: myokines, adipokines, cytokines in muscle pathophysiology

    Get PDF
    Individual striated muscle fibers communicate in both a paracrine and endocrine fashion and are also involved in the crosstalk with other tissues and organs such as the adipose tissue, immune system, liver, pancreas, bones, and brain (Delezie andHandschin, 2018). The striatedmuscle, which accounts for 40% of bodymass, presents high biosynthetic activity, and extensive vascularization, features that endorse current thinking that muscle is the largest endocrine system of the body (Benatti and Pedersen, 2015). There are hundreds of muscle secretory products, collectively known as myokines, including proteins, miRNA, and exosomes (Barone et al., 2016). Muscle secretion is significantly affected by muscle contraction (Son et al., 2018) due to the activation of mechanotransduction pathways (Coletti et al., 2016a). It has been suggested that the adipose tissue is also an endocrine organ, producing adipokines- leptin, and other hormones, in addition to cytokines (Galic et al., 2010). The inflammatory infiltrate in fat depots affects the course of several diseases, including cancer (Batista et al., 2012; Sawicka and Krasowska, 2016; Neto et al., 2018; Opatrilova et al., 2018), and an extensive review on the role of adipokines in disease has been published elsewhere (Orzechowski et al., 2014). Myokines, adipokines, and cytokines are major therapeutic targets in both muscular and non-muscular diseases (Lindegaard et al., 2013;Manole et al., 2018), and understanding of their role in tissue crosstalk represents a subject of great interest in current biology.We have therefore chosen to address this paradigm within this Frontiers special issue on “Myokines, Adipokines, Cytokines in Muscle Pathophysiology.

    Search for anisotropies in cosmic-ray positrons detected by the PAMELA experiment

    Get PDF
    The PAMELA detector was launched on board of the Russian Resurs-DK1 satellite on June 15, 2006. Data collected during the first four years have been used to search for large-scale anisotropies in the arrival directions of cosmic-ray positrons. The PAMELA experiment allows for a full sky investigation, with sensitivity to global anisotropies in any angular window of the celestial sphere. Data samples of positrons in the rigidity range 10 GV \leq R \leq 200 GV were analyzed. This article discusses the method and the results of the search for possible local sources through analysis of anisotropy in positron data compared to the proton background. The resulting distributions of arrival directions are found to be isotropic. Starting from the angular power spectrum, a dipole anisotropy upper limit \delta = 0.166 at 95% C.L. is determined. Additional search is carried out around the Sun. No evidence of an excess correlated with that direction was found.Comment: The value of the dipole anisotropy upper limit has been changed. The method is correct but there was a miscalculation in the relative formul

    Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    Get PDF
    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei, as well as the B/C ratio, from the PAMELA space experiment. The results span the range 0.44 - 129 GeV/n in kinetic energy for data taken in the period July 2006 - March 2008

    Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum

    Full text link
    Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy not accessible from the study of the cosmic-ray nuclear components due to their differing diffusion and energy-loss processes. However, when measured near Earth, the effects of propagation and modulation of galactic cosmic rays in the heliosphere, particularly significant for energies up to at least 30 GeV, must be properly taken into account. In this paper the electron (e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009 over six-months time intervals are presented. Fluxes are compared with a state-of-the-art three-dimensional model of solar modulation that reproduces the observations remarkably well.Comment: 40 pages, 18 figures, 1 tabl
    corecore