2,662 research outputs found
Atomic States Entanglement in Carbon Nanotubes
The entanglement of two atoms (ions) doped into a carbon nanotube has been
investigated theoretically. Based on the photon Green function formalism for
quantizing electromagnetic field in the presence of carbon nanotubes,
small-diameter metallic nanotubes are shown to result in a high degree of the
two-qubit atomic entanglement for long times due to the strong atom-field
coupling.Comment: 4 pages, 2 figure
A Variational Approach to Nonlocal Exciton-Phonon Coupling
In this paper we apply variational energy band theory to a form of the
Holstein Hamiltonian in which the influence of lattice vibrations (optical
phonons) on both local site energies (local coupling) and transfers of
electronic excitations between neighboring sites (nonlocal coupling) is taken
into account. A flexible spanning set of orthonormal eigenfunctions of the
joint exciton-phonon crystal momentum is used to arrive at a variational
estimate (bound) of the ground state energy for every value of the joint
crystal momentum, yielding a variational estimate of the lowest polaron energy
band across the entire Brillouin zone, as well as the complete set of polaron
Bloch functions associated with this band. The variation is implemented
numerically, avoiding restrictive assumptions that have limited the scope of
previous assaults on the same and similar problems. Polaron energy bands and
the structure of the associated Bloch states are studied at general points in
the three-dimensional parameter space of the model Hamiltonian (electronic
tunneling, local coupling, nonlocal coupling), though our principal emphasis
lay in under-studied area of nonlocal coupling and its interplay with
electronic tunneling; a phase diagram summarizing the latter is presented. The
common notion of a "self-trapping transition" is addressed and generalized.Comment: 33 pages, 11 figure
Control of scroll wave turbulence using resonant perturbations
Turbulence of scroll waves is a sort of spatio-temporal chaos that exists in
three-dimensional excitable media. Cardiac tissue and the Belousov-Zhabotinsky
reaction are examples of such media. In cardiac tissue, chaotic behaviour is
believed to underlie fibrillation which, without intervention, precedes cardiac
death. In this study we investigate suppression of the turbulence using
stimulation of two different types, "modulation of excitability" and "extra
transmembrane current". With cardiac defibrillation in mind, we used a single
pulse as well as repetitive extra current with both constant and feedback
controlled frequency. We show that turbulence can be terminated using either a
resonant modulation of excitability or a resonant extra current. The turbulence
is terminated with much higher probability using a resonant frequency
perturbation than a non-resonant one. Suppression of the turbulence using a
resonant frequency is up to fifty times faster than using a non-resonant
frequency, in both the modulation of excitability and the extra current modes.
We also demonstrate that resonant perturbation requires strength one order of
magnitude lower than that of a single pulse, which is currently used in
clinical practice to terminate cardiac fibrillation. Our results provide a
robust method of controlling complex chaotic spatio-temporal processes.
Resonant drift of spiral waves has been studied extensively in two dimensions,
however, these results show for the first time that it also works in three
dimensions, despite the complex nature of the scroll wave turbulence.Comment: 13 pages, 12 figures, submitted to Phys Rev E 2008/06/13. Last
version: 2008/09/18, after revie
Second quantization method in the presence of bound states of particles
We develop an approximate second quantization method for describing the
many-particle systems in the presence of bound states of particles at low
energies (the kinetic energy of particles is small in comparison to the binding
energy of compound particles). In this approximation the compound and
elementary particles are considered on an equal basis. This means that creation
and annihilation operators of compound particles can be introduced. The
Hamiltonians, which specify the interactions between compound and elementary
particles and between compound particles themselves are found in terms of the
interaction amplitudes for elementary particles. The nonrelativistic quantum
electrodynamics is developed for systems containing both elementary and
compound particles. Some applications of this theory are considered.Comment: 35 page
Stability of C20 fullerene chains
The stability of (C20)N chains with N = 3 - 7 is analyzed by numerical
simulation using a tight-binding potential and molecular dynamics. Various
channels of losing the cluster-chain structure of the (C20)N complexes are
observed, including the decay of C20 clusters, their coalescence, and the
separation of one C20 fullerene from the chain.Comment: To appear in JETP Letter
Structure and Stability of Two-Dimensional Complexes of C_20 Fullerenes
Two-dimensional complexes of C_20 fullerenes connected to each other by
covalent bonds have been studied. Several isomers with different types of
intercluster bonds have been revealed. The lifetimes of the (C_20)_MxM systems
with M = 2 and 3 have been directly calculated at T = 1800 - 3300 K making use
of molecular dynamics. It has been shown that these complexes lose their
periodic cluster structure due to either coalescence of two fullerenes C_20 or
decay of C_20 fullerenes. The activation energies of these processes exceed 2
eV.Comment: 17 pages, 5 figure
- …
