959 research outputs found
Power-laws in recurrence networks from dynamical systems
Recurrence networks are a novel tool of nonlinear time series analysis
allowing the characterisation of higher-order geometric properties of complex
dynamical systems based on recurrences in phase space, which are a fundamental
concept in classical mechanics. In this Letter, we demonstrate that recurrence
networks obtained from various deterministic model systems as well as
experimental data naturally display power-law degree distributions with scaling
exponents that can be derived exclusively from the systems' invariant
densities. For one-dimensional maps, we show analytically that is not
related to the fractal dimension. For continuous systems, we find two distinct
types of behaviour: power-laws with an exponent depending on a
suitable notion of local dimension, and such with fixed .Comment: 6 pages, 7 figure
Inclusive electron scattering in a relativistic Green function approach
A relativistic Green function approach to the inclusive quasielastic (e,e')
scattering is presented. The single particle Green function is expanded in
terms of the eigenfunctions of the nonhermitian optical potential. This allows
one to treat final state interactions consistently in the inclusive and in the
exclusive reactions. Numerical results for the response functions and the cross
sections for different target nuclei and in a wide range of kinematics are
presented and discussed in comparison with experimental data.Comment: 12 pages, 7 figures, REVTeX
Nuclear effects in charged-current quasielastic neutrino-nucleus scattering
After a short review of the recent developments in studies of
neutrino-nucleus interactions, the predictions for double-differential and
integrated charged current-induced quasielastic cross sections are presented
within two different relativistic approaches: one is the so-called SuSA method,
based on the superscaling behavior exhibited by electron scattering data; the
other is a microscopic model based on relativistic mean field theory, and
incorporating final-state interactions. The role played by the meson-exchange
currents in the two-particle two-hole sector is explored and the results are
compared with the recent MiniBooNE data.Comment: 12 pages, 9 figures, to appear in the Proceedings of "XIII Convegno
di Cortona su Problemi di Fisica Nucleare Teorica", Cortona (Italy), April
6-8, 201
Mean-field calculations of exotic nuclei ground states
We study the predictions of three mean-field theoretical approaches in the
description of the ground state properties of some spherical nuclei far from
the stability line. We compare binding energies, single particle spectra,
density distributions, charge and neutron radii obtained with non-relativistic
Hartree-Fock calculations carried out with both zero and finite-range
interactions, and with a relativistic Hartree approach which uses a
finite-range interaction. The agreement between the results obtained with the
three different approaches indicates that these results are more related to the
basic hypotheses of the mean-field approach rather than to its implementation
in actual calculations.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in Physical
Review
Electron-induced proton knockout from neutron rich nuclei
We study the evolution of the \eep cross section on nuclei with increasing
asymmetry between the number of neutrons and protons. The calculations are done
within the framework of the nonrelativistic and relativistic distorted-wave
impulse approximation. In the nonrelativistic model phenomenological
Woods-Saxon and Hartree-Fock wave functions are used for the proton bound-state
wave functions, in the relativistic model the wave functions are solutions of
Dirac-Hartree equations. The models are first tested against experimental data
on Ca and Ca nuclei, and then they are applied to a set of
spherical calcium isotopes.Comment: 5 pages, 2 figures. contribution to the XIX International School on
Nuclear Physics, Neutron Physics and Applications, Varna (Bulgaria) September
19-25, 201
Global relativistic folding optical potential and the relativistic Green's function model
Optical potentials provide critical input for calculations on a wide variety of nuclear reactions, in particular, for neutrino-nucleus reactions, which are of great interest in the light of the new neutrino oscillation experiments. We present the global relativistic folding optical potential (GRFOP) fits to elastic proton scattering data from C-12 nucleus at energies between 20 and 1040 MeV. We estimate observables, such as the differential cross section, the analyzing power, and the spin rotation parameter, in elastic proton scattering within the relativistic impulse approximation. The new GRFOP potential is employed within the relativistic Green's function model for inclusive quasielastic electron scattering and for (anti) neutrino-nucleus scattering at MiniBooNE kinematics
Meson exchange currents in electromagnetic one-nucleon emission
The role of meson exchange currents (MEC) in electron- and photon-induced
one-nucleon emission processes is studied in a nonrelativistic model including
correlations and final state interactions. The nuclear current is the sum of a
one-body and of a two-body part. The two-body current includes pion seagull,
pion-in-flight and the isobar current contributions. Numerical results are
presented for the exclusive 16O(e,e'p)15N and 16O(\gamma,p)15N reactions. MEC
effects are in general rather small in (e,e'p), while in (\gamma,p) they are
always large and important to obtain a consistent description of (e,e'p) and
(\gamma,p) data, with the same spectroscopic factors. The calculated (\gamma,p)
cross sections are sensitive to short-range correlations at high values of the
recoil momentum, where MEC effects are larger and overwhelm the contribution of
correlations.Comment: 9 pages, 6 figure
ANALYSIS OF THE SPATIAL-SEMANTIC COHERENCE IN THE GETTY AAT VOCABULARY DATA STRUCTURE - AN EDUCATIONAL EXPERIENCE
Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment
CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission
designed to collect direct data on the elemental composition and individual
energy spectra of cosmic rays. Two instrument suites have been built to be
flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for
the second flight, scheduled for December 2005, was calibrated with electron
and proton beams at CERN. A calibration procedure based on the study of the
longitudinal shower profile is described and preliminary results of the beam
test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th
International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10,
200
Models for quasielastic electron and neutrino-nucleus scattering
Models developed for the exclusive and inclusive quasielastic (QE)
electron-nucleus scattering have been extended to QE neutrino-nucleus
scattering. Different descriptions of final-state interactions (FSI) are
compared. For the inclusive electron scattering the relativistic Green's
function model (RGF) is compared with a model based on the use of relativistic
purely real mean field (RMF) potentials in the final state. Both approaches
lead to a redistribution of the strength but conserving the total flux. Results
for electron and neutrino scattering are presented and discussed in different
conditions and kinematics. The results of the RGF and RMF models are compared
with the double-differential charged-current QE neutrino cross sections
recently measured by the MiniBooNE collaboration using a carbon target.Comment: 12 pages, 7 figures, contribution to the XIII Conference on Problems
in Theoretical Nulcear Physics in Italy, Cortona 6-8 April 201
- …
