2,449 research outputs found
Forming and confining of dipolar excitons by quantizing magnetic fields
We show that a magnetic field perpendicular to an AlGaAs/GaAs coupled quantum
well efficiently traps dipolar excitons and leads to the stabilization of the
excitonic formation and confinement in the illumination area. Hereby, the
density of dipolar excitons is remarkably enhanced up to . By means of Landau level spectroscopy we study the density of excess
holes in the illuminated region. Depending on the excitation power and the
applied electric field, the hole density can be tuned over one order of
magnitude up to - a value comparable with typical
carrier densities in modulation-doped structures.Comment: 4.3 Pages, 4 Figure
Energetics of metal slabs and clusters: the rectangle-box model
An expansion of energy characteristics of wide thin slab of thickness L in
power of 1/L is constructed using the free-electron approximation and the model
of a potential well of finite depth. Accuracy of results in each order of the
expansion is analyzed. Size dependences of the work function and electronic
elastic force for Au and Na slabs are calculated. It is concluded that the work
function of low-dimensional metal structure is always smaller that of
semi-infinite metal sample.
A mechanism for the Coulomb instability of charged metal clusters, different
from Rayleigh's one, is discussed. The two-component model of a metallic
cluster yields the different critical sizes depending on a kind of charging
particles (electrons or ions). For the cuboid clusters, the electronic spectrum
quantization is taken into account. The calculated critical sizes of
Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental
data. A qualitative explanation is suggested for the Coulomb explosion of
positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl
Unpaired and spin-singlet paired states of a two-dimensional electron gas in a perpendicular magnetic field
We present a variational study of both unpaired and spin-singlet paired
states induced in a two-dimensional electron gas at low density by a
perpendicular magnetic field. It is based on an improved circular-cell
approximation which leads to a number of closed analytical results. The
ground-state energy of the Wigner crystal containing a single electron per cell
in the lowest Landau level is obtained as a function of the filling factor
: the results are in good agreement with those of earlier approaches and
predict for the upper filling factor at which the
solid-liquid transition occurs. A novel localized state of spin-singlet
electron pairs is examined and found to be a competitor of the unpaired state
for filling factor . The corresponding phase boundary is quantitatively
displayed in the magnetic field-electron density plane.Comment: 19 pages, 8 figures, submitted to Phys. Rev. B on 7th April 2001. to
appear in Phys. Rev.
Maximal atmospheric neutrino mixing and the small ratio of muon to tau mass
We discuss the problem of the small ratio of muon mass to tau mass in a class
of seesaw models where maximal atmospheric neutrino mixing is enforced through
a -- interchange symmetry. We introduce into those models an
additional symmetry such that in the case of exact
invariance. The symmetry may be softly broken in the Higgs potential, and
one thus achieves in a technically natural way. We speculate
on a wider applicability of this mechanism.Comment: 10 pages, plain LaTeX, no figures, minor changes, final version for
J. Phys.
Global hybrids from the semiclassical atom theory satisfying the local density linear response
We propose global hybrid approximations of the exchange-correlation (XC)
energy functional which reproduce well the modified fourth-order gradient
expansion of the exchange energy in the semiclassical limit of many-electron
neutral atoms and recover the full local density approximation (LDA) linear
response. These XC functionals represent the hybrid versions of the APBE
functional [Phys. Rev. Lett. 106, 186406, (2011)] yet employing an additional
correlation functional which uses the localization concept of the correlation
energy density to improve the compatibility with the Hartree-Fock exchange as
well as the coupling-constant-resolved XC potential energy. Broad energetical
and structural testings, including thermochemistry and geometry, transition
metal complexes, non-covalent interactions, gold clusters and small
gold-molecule interfaces, as well as an analysis of the hybrid parameters, show
that our construction is quite robust. In particular, our testing shows that
the resulting hybrid, including 20\% of Hartree-Fock exchange and named hAPBE,
performs remarkably well for a broad palette of systems and properties, being
generally better than popular hybrids (PBE0 and B3LYP). Semi-empirical
dispersion corrections are also provided.Comment: 12 pages, 4 figure
Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface
The nuclear polarization of molecules formed by recombination
of nuclear polarized H atoms on the surface of a storage cell initially coated
with a silicon-based polymer has been measured by using the longitudinal
double-spin asymmetry in deep-inelastic positron-proton scattering. The
molecules are found to have a substantial nuclear polarization, which is
evidence that initially polarized atoms retain their nuclear polarization when
absorbed on this type of surfac
- …
