1,418 research outputs found

    The Supernova Gamma-Ray Burst Connection

    Get PDF
    The chief distinction between ordinary supernovae and long-soft gamma-ray bursts (GRBs) is the degree of differential rotation in the inner several solar masses when a massive star dies, and GRBs are rare mainly because of the difficulty achieving the necessary high rotation rate. Models that do provide the necessary angular momentum are discussed, with emphasis on a new single star model whose rapid rotation leads to complete mixing on the main sequence and avoids red giant formation. This channel of progenitor evolution also gives a broader range of masses than previous models, and allows the copious production of bursts outside of binaries and at high redshifts. However, even the production of a bare helium core rotating nearly at break up is not, by itself, a sufficient condition to make a gamma-ray burst. Wolf-Rayet mass loss must be low, and will be low in regions of low metallicity. This suggests that bursts at high redshift (low metallicity) will, on the average, be more energetic, have more time structure, and last longer than bursts nearby. Every burst consists of three components: a polar jet (~0.1 radian), high energy, subrelativistic mass ejection (~1 radian), and low velocity equatorial mass that can fall back after the initial explosion. The relative proportions of these three components can give a diverse assortment of supernovae and high energy transients whose properties may vary with redshift.Comment: 10 pages, to appear in AIP Conf. Proc. "Gamma Ray Bursts in the Swift Era", Eds. S. S. Holt, N. Gehrels, J. Nouse

    Long gamma-ray bursts and core-collapse supernovae have different environments

    Get PDF
    When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the long gamma-ray bursts are far more concentrated on the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9 February 2006, online publication 10 May 2006. Supplementary material referred to in the text can be found at http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new version contains minor changes to match the final published versio

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Survival and long-term maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene. First record of Aesculus L.

    Get PDF
    The Italian and Balkan peninsulas have been places traditionally highlighted as Pleistocene glacial refuges. The Iberian Peninsula, however, has been a focus of controversy between geobotanists and palaeobotanists as a result of its exclusion from this category on different occasions. In the current paper, we synthesise geological, molecular, palaeobotanical and geobotanical data that show the importance of the Iberian Peninsula in the Western Mediterranean as a refugium area. The presence of Aesculus aff. hippocastanum L. at the Iberian site at Cal Guardiola (Tarrasa, Barcelona, NE Spain) in the Lower– Middle Pleistocene transition helps to consolidate the remarkable role of the Iberian Peninsula in the survival of tertiary species during the Pleistocene. The palaeodistribution of the genus in Europe highlights a model of area abandonment for a widely-distributed species in the Miocene and Pliocene, leading to a diminished and fragmentary presence in the Pleistocene and Holocene on the southern Mediterranean peninsulas. Aesculus fossils are not uncommon within the series of Tertiary taxa. Many appear in the Pliocene and suffer a radical impoverishment in the Lower–Middle Pleistocene transition. Nonetheless some of these tertiary taxa persisted throughout the Pleistocene and Holocene up to the present in the Iberian Peninsula. Locating these refuge areas on the Peninsula is not an easy task, although areas characterised by a sustained level of humidity must have played an predominant role

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Compression garments and fabric orthoses for rehabilitation and function: a systematic mapping review.

    Get PDF
    Background/aims: Compression garments, joint supports and dynamic movement orthoses all use elastic fibres and close-fitting designs and have been researched for their effects on movement. There is little cross-referencing between research into these interventions. This review aimed to improve inter-disciplinary understanding by analysing key characteristics of the published evidence. Methods: Systematic mapping reviews identify gaps in an evidence base and identify questions for more in-depth reviews. This review was conducted in-line with current guidance. MEDLINE, CINAHL and Sports Discuss were searched for primary research investigating compression garments and orthoses for movement and function. The following search terms were used: "elastane", "spandex", "Lycra", "elastomer*", "Theratog*", "compression", "Neoprene", "orthotic", "orthosis", "shorts", "garment*", "splint", "brace", "sock*" and "stockings". Studies were screened against predetermined criteria and key study characteristics extracted. Findings: Three hundred and fifty-one studies were selected and analysed. Compression garment research was most common (236 studies), followed by research into joint supports (64 studies) and dynamic movement orthoses (42 studies). Research largely reflects the purpose for which each intervention was originally designed. Common topics investigated include posture and movement control, proprioception and muscle activity. Pressure beneath compression garments was measured in 30% of studies. Conclusions: The review highlights a need for more robust study designs in patient populations and accurate description of interventions. There is a need for a review on the possible effects of compression and support on movement control which should be used to inform future primary research

    Evidence for 'critical slowing down' in seagrass:a stress gradient experiment at the southern limit of its range

    Get PDF
    The theory of critical slowing down, i.e. the increasing recovery times of complex systems close to tipping points, has been proposed as an early warning signal for collapse. Empirical evidence for the reality of such warning signals is still rare in ecology. We studied this on Zostera noltii intertidal seagrass meadows at their southern range limit, the Banc d'Arguin, Mauritania. We analyse the environmental covariates of recovery rates using structural equation modelling (SEM), based on an experiment in which we assessed whether recovery after disturbances (i.e. seagrass & infauna removal) depends on stress intensity (increasing with elevation) and disturbance patch size (1 m(2) vs. 9 m(2)). The SEM analyses revealed that higher biofilm density and sediment accretion best explained seagrass recovery rates. Experimental disturbances were followed by slow rates of recovery, regrowth occurring mainly in the coolest months of the year. Macrofauna recolonisation lagged behind seagrass recovery. Overall, the recovery rate was six times slower in the high intertidal zone than in the low zone. The large disturbances in the low zone recovered faster than the small ones in the high zone. This provides empirical evidence for critical slowing down with increasing desiccation stress in an intertidal seagrass system
    corecore