118 research outputs found

    IL-6 and TNF-alpha polymorphisms in portuguese psoriatic patients

    Get PDF
    Introduction: Cytokines regulate the growth, function and differentiation of cells and help to steer immune response and inflammation. In this study we focused our attention in two proinflammatory cytokines: IL-6 and TNFa. It is known that their overexpression is responsible for initiation, maintenance and recurrence of skin lesions in psoriatic patients. Therefore, it is important to investigate genetic biomarkers with functional effects in the genes of those cytokines that could help to predict the severity of Psoriasis. Objectives: To investigate the hypothesis that allelic variants in IL-6 and TNF-a genes are a risk factor for the developing of severe Psoriasis. Materials and Methods: A cohort of 178 (74 females, 104 males) psoriatic patients with severe plaque type psoriasis [according to the Psoriasis Area and Severity Index (PASI)] and 206 healthy individuals were selected. Several polymorphisms in the IL-6 gene (rs1800795, rs1800796, rs2069827, rs2069840) and TNF-a (rs361525, rs1799964, rs1800629) promoter region were genotyped. SNP genotyping was performed using Mass Spectrometry (MassARRAY iPLEX–Sequenom). Results: We observed a lower frequency in the minor allele (C) of the TNFa rs1799964 SNP in psoriatic patients, compared with controls [(21.9% vs. 29.4%), p = 0.02, OR = 0.675 (0.49–0.94)]. The frequency of the CC genotype in patients was 3.93% while in the healthy control group it was 9.22% [(p = 0.04, OR = 0.403 (0.17–0.98)]. No statistical significant differences were found in the other polymorphisms. Conclusion: Our data suggest that the rs1799964 C allele could be a protective factor for developing severe psoriasis. These results were similar to the findings of Gallo et al (2012) in a Spanish population. The mechanism to explain this association remains elusive, given the lack of evidence of a functional association

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Glutamine dipeptide supplementation improves clinical responses in patients with diabetic foot syndrome

    Get PDF
    ABSTRACT The effect of glutamine dipeptide (GDP) supplementation in patients with diabetic foot syndrome was evaluated. A total of 22 patients took part in the study. GDP was supplied in 10 g sachets, and was dissolved in water immediately before use, with ingestion once a day, after lunch or after dinner (20 g/day) over a period of 30 days. Quantification of foot insensitive areas, oxidative stress, blood cytokines, and biochemical, hematological and toxicological parameters was performed before and after GDP supplementation. We observed an increase in blood levels of interferon-&#945; (P=0.023), interferon-&#947; (P=0.038), interleukin-4 (P=0.003), interleukin-6 (P=0.0025), interleukin-7 (P=0.028), interleukin-12 p40 (P=0.017), interleukin-13 (P=0.001), leukocytes (P=0.037), eosinophils (P=0.049), and typical lymphocytes (P<0.001) due to GDP administration. In addition, we observed a reduced number (P=0.048) of insensitive areas on the foot, and reduction (P=0.047) of fasting hyperglycemia. Patients also showed increased blood high density lipoprotein (P<0.01) and protein thiol groups (P=0.004). These favorable results were associated with the absence of renal and hepatic toxicity. These results are of clinical relevance, since supplementation with GDP over 30 days improved clinical responses in patients with diabetic foot syndrome

    Epidural levobupivacaine alone or combined with different morphine doses in bitches under continuous propofol infusion

    Full text link
    The aim of this study was to assess the cardiopulmonary, analgesic, adverse effects, serum concentration of cortisol and plasma levels of levobupivacaine and morphine in bitches undergoing propofol anesthesia and epidural analgesia with levobupivacaine alone or combined with morphine. This was a randomized 'blinded' prospective clinical study using 32 adult bitches weighing 9.8±4.1kg that were admitted for elective ovariohysterectomy. Twenty minutes after administration of acepromazine and midazolam, anesthesia was induced with propofol (4mg kg-1) and maintained by a continuous rate infusion (CRI). Each animal was randomly assigned to one of four epidural groups: GL = levobupivacaine alone (0.33mg kg-1); GLM0.1 = levobupivacaine and morphine (0.1mg kg-1); GLM0.15 = levobupivacaine and morphine (0.15mg kg-1); and GLM0.2 = levobupivacaine and morphine (0.2mg kg-1). Variables obtained during anesthesia were heart rate, respiratory rate, systolic, mean and diastolic arterial blood pressures, oxyhemoglobin saturation, inspired oxygen fraction, end-tidal carbon dioxide tension, blood gases, serum cortisol, and plasma levels of levobupivacaine and morphine. The onset and duration times of the blockade were recorded. Arterial pressures were significantly increased in all groups at the times of ovarian pedicle clamping. There was a decrease in pH, together with an increase in both PaO2and PaCO2 over time. Serum cortisol levels were increased in TESu compared to TB, T30 and TR. Limb spasticity, muscle tremors, opisthotonos and diarrhea were observed in some animals during propofol infusion and ceased with the end of CRI. Reactions happened at different moments and lasted for different periods of time in each individual. Epidural with levobupivacaine alone or combined with morphine allowed for ovariohysterectomy to be performed under low propofol infusion rates, with minimal changes in cardiovascular variables and in serum cortisol levels. Adverse effects were observed in very few animals in each group

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9–3·0) for men and 3·5 years (3·4–3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78–0·92) and 1·2 years (1·1–1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. Funding Bill &amp; Melinda Gates Foundation

    Development and bloom in hybrids of wild passion fruit cultivated in different types of pots and shading levels

    Full text link
    Ornamental hybrids of passion flowers are thoroughly diffused in many countries and used in the decoration of houses and gardens. However, the cultivation of ornamental passion fruits practically unexploited in Brazil. This study aimed at evaluating the growth and blooming of F1 hybrids of Passiflora L. (P. sublanceolata J.M. MacDougal [ex P. palmeri var. sublanceolata Killip] vs. P. foetida var. foetida L.) cultivated in ceramic and concrete pots under different shading levels. The vegetative and flower evaluations were carried out weekly, in clonal cuttings 60 days after rooting. The height, leaf length and width, the number of internodes and leaves and stem diameter were evaluated using a randomized complete design in a factorial scheme which corresponded to two genotypes, two types of pot, three shading levels (25 %, 50 %, 75 %) and seven weeks of evaluation, with four replications. For the variable number of flowers, the same experimental design was adopted. However, the number of evaluations was modified for three periods, but this was not considered for the flower diameter and leaf area. The shading levels of 25 % and 50 % were the most favorable to the growth in height, whereas hybrid genotypes under 25 % shade had greater increase in the number of leaves, internodes and stem diameter, showing tolerance to moderate shade. The higher values for length, width and leaf area were observed at 75 % shade. The greatest number of flowers was verified at 25 % shadow in concrete pots. As for the types of pot, the ceramic ones were more favorable to the growth of hybrid plants during the first weeks of acclimatization to the treatments, and the concrete ones were more propitious to blooming. Thus, the use of hybrid plants in concrete pots for the ornamentation of internal environments is recommended, if they are well illuminated

    Integrated genomic surveillance enables tracing of person-to-person SARS-CoV-2 transmission chains during community transmission and reveals extensive onward transmission of travel-imported infections, Germany, June to July 2021

    Get PDF
    BackgroundTracking person-to-person SARS-CoV-2 transmission in the population is important to understand the epidemiology of community transmission and may contribute to the containment of SARS-CoV-2. Neither contact tracing nor genomic surveillance alone, however, are typically sufficient to achieve this objective.AimWe demonstrate the successful application of the integrated genomic surveillance (IGS) system of the German city of Düsseldorf for tracing SARS-CoV-2 transmission chains in the population as well as detecting and investigating travel-associated SARS-CoV-2 infection clusters.MethodsGenomic surveillance, phylogenetic analysis, and structured case interviews were integrated to elucidate two genetically defined clusters of SARS-CoV-2 isolates detected by IGS in Düsseldorf in July 2021.ResultsCluster 1 (n = 67 Düsseldorf cases) and Cluster 2 (n = 36) were detected in a surveillance dataset of 518 high-quality SARS-CoV-2 genomes from Düsseldorf (53% of total cases, sampled mid-June to July 2021). Cluster 1 could be traced back to a complex pattern of transmission in nightlife venues following a putative importation by a SARS-CoV-2-infected return traveller (IP) in late June; 28 SARS-CoV-2 cases could be epidemiologically directly linked to IP. Supported by viral genome data from Spain, Cluster 2 was shown to represent multiple independent introduction events of a viral strain circulating in Catalonia and other European countries, followed by diffuse community transmission in Düsseldorf.ConclusionIGS enabled high-resolution tracing of SARS-CoV-2 transmission in an internationally connected city during community transmission and provided infection chain-level evidence of the downstream propagation of travel-imported SARS-CoV-2 cases

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography–year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4–61·9) in 1980 to 71·8 years (71·5–72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7–17·4), to 62·6 years (56·5–70·2). Total deaths increased by 4·1% (2·6–5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8–18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6–16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9–14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1–44·6), malaria (43·1%, 34·7–51·8), neonatal preterm birth complications (29·8%, 24·8–34·9), and maternal disorders (29·1%, 19·3–37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000–183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000–532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Funding Bill &amp; Melinda Gates Foundation

    Search for invisible Higgs boson decays in vector boson fusion at √s = 13 TeV with the ATLAS detector

    Get PDF
    We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeV and O(100) GeV missing transverse momentum. The analysis uses 36.1 fb−1 of pp collision data at √s=13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the wimp–nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3–1.7 pb
    corecore