908 research outputs found

    Search for the Lepton Flavour Violating Higgs decay H --> tau mu at Hadron Colliders

    Full text link
    We study the prospects to detect at hadron colliders the Lepton Flavour Violating Higgs decay H --> tau mu, which can reach substantial branching fractions in several extensions of the SM. Among them, the generic two higgs doublet model can be taken as a representative case where B.R.(H --> tau mu) can reach values of order 10^-1-10^-2. Bounds on the LFV factor kappa_{tau mu} of order 0.8-1.7 can be derived at 95% c.l. at Tevatron Run-2 with 4 fb^-1 for m_H = 110-150 GeV.Comment: 3 pages, 1 figure, uses RevTeX4. Contribution to Snowmass 200

    Data production models for the CDF experiment

    Get PDF
    The data production for the CDF experiment is conducted on a large Linux PC farm designed to meet the needs of data collection at a maximum rate of 40 MByte/sec. We present two data production models that exploits advances in computing and communication technology. The first production farm is a centralized system that has achieved a stable data processing rate of approximately 2 TByte per day. The recently upgraded farm is migrated to the SAM (Sequential Access to data via Metadata) data handling system. The software and hardware of the CDF production farms has been successful in providing large computing and data throughput capacity to the experiment.Comment: 8 pages, 9 figures; presented at HPC Asia2005, Beijing, China, Nov 30 - Dec 3, 200

    A study of the nuclear medium influence on transverse momentum of hadrons produced in deep inelastic neutrino scattering

    Full text link
    The influence of nuclear effects on the transverse momentum (pT)(p_T) distributions of neutrinoproduced hadrons is investigated using the data obtained with SKAT propane-freon bubble chamber irradiated in the neutrino beam (with EνE_{\nu} = 3-30 GeV) at Serpukhov accelerator. Dependences of onthekinematicalvariablesofinclusivedeepinelasticscatteringandoftheproducedhadronsaremeasured.Ithasbeenobserved,thatthenucleareffectscauseanenhancementof on the kinematical variables of inclusive deep-inelastic scattering and of the produced hadrons are measured. It has been observed, that the nuclear effects cause an enhancement of of hadrons (more pronounced for the positively charged ones) produced in the target fragmentation region at low invariant mass of the hadronic system (2 <W<< W < 4 GeV) or at low energies transferred to the current quark (2 <ν<9< \nu < 9 GeV). At higher WW or ν\nu, no influence of nuclear effects on is observed. Measurement results are compared with predictions of a simple model, incorporating secondary intranuclear interactions of hadrons (with a formation length extracted from the Lund fragmentation model), which qualitatively reproduces the main features of the data.Comment: 23 pages, 7 figure

    Data processing model for the CDF experiment

    Get PDF
    The data processing model for the CDF experiment is described. Data processing reconstructs events from parallel data streams taken with different combinations of physics event triggers and further splits the events into datasets of specialized physics datasets. The design of the processing control system faces strict requirements on bookkeeping records, which trace the status of data files and event contents during processing and storage. The computing architecture was updated to meet the mass data flow of the Run II data collection, recently upgraded to a maximum rate of 40 MByte/sec. The data processing facility consists of a large cluster of Linux computers with data movement managed by the CDF data handling system to a multi-petaByte Enstore tape library. The latest processing cycle has achieved a stable speed of 35 MByte/sec (3 TByte/day). It can be readily scaled by increasing CPU and data-handling capacity as required.Comment: 12 pages, 10 figures, submitted to IEEE-TN

    Search for the Supersymmetric Partner of the Top-Quark in ppˉp \bar{p} Collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV}

    Full text link
    We report on a search for the supersymmetric partner of the top quark (stop) produced in ttˉt \bar{t} events using 110pb1110 {\rm pb}^{-1} of ppˉp \bar{p} collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV} recorded with the Collider Detector at Fermilab. In the case of a light stop squark, the decay of the top quark into stop plus the lightest supersymmetric particle (LSP) could have a significant branching ratio. The observed events are consistent with Standard Model ttˉt \bar{t} production and decay. Hence, we set limits on the branching ratio of the top quark decaying into stop plus LSP, excluding branching ratios above 45% for a LSP mass up to 40 {\rm GeV/c}2^{2}.Comment: 11 pages, 4 figure

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with the Collider Detector at Fermilab. We select ttbar decays into the final states e nu + jets and mu nu + jets, in which at least one b quark from the t-quark decays is identified using a secondary vertex-finding algorithm. Assuming a top quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat) +1.1-0.9 (syst) pb. We also report the first observation of ttbar with significance greater than 5 sigma in the subsample in which both b quarks are identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3 (syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page

    Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-

    Get PDF
    We report the first observation of the baryonic flavor-changing neutral current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a statistical significance of 5.8 Gaussian standard deviations. This measurement uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV collected by the CDF II detector at the Tevatron collider. The total and differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}. We also report the first measurement of the differential branching ratio of B_s -> phi mu+ mu- using 49 signal events. In addition, we report branching ratios for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let

    Physics at Future Hadron Colliders

    Get PDF
    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates

    First observation and measurement of the resonant structure of the lambda_b->lambda_c pi-pi+pi- decay mode

    Full text link
    We present the first observation of the lambda_b->lambda_c pi-pi+pi- decay using data from an integrated luminosity of approximately 2.4 fb-1 of ppbar collisions at ECM=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. We also present the first observation of the resonant decays lambda_b->sigma_c(2455)0 pi+pi- ->lambda_c pi-pi+pi-, lambda_b->sigma_c(2455)++ pi-pi- ->lambda_c pi-pi+pi-, lambda_b->lambda_c(2595)+ pi- ->lambda_c pi-pi+pi- and lambda_b->lambda_c(2625)+ pi- ->lambda_c pi-pi+pi-, and measure their relative branching ratios.Comment: 3 pages, 3 figures, to appear in the proceedings of LEPTON PHOTON 2009, Hamburg, German
    corecore