3,490 research outputs found
Antikaon production in nucleon-nucleon reactions near threshold
The antikaon production cross section from nucleon-nucleon reactions near
threshold is studied in a meson exchange model. We include both pion and kaon
exchange, but neglect the interference between the amplitudes. In case of pion
exchange the antikaon production cross section can be expressed in terms of the
antikaon production cross section from a pion-nucleon interaction, which we
take from the experimental data if available. Otherwise, a -resonance
exchange model is introduced to relate the different reaction cross sections.
In case of kaon exchange the antikaon production cross section is related to
the elastic and cross sections, which are again taken from
experimental measurements. We find that the one-meson exchange model gives a
satisfactory fit to the available data for the cross section
at high energies. We compare our predictions for the cross section near
threshold with an earlier empirical parameterization and that from phase space
models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.
Resolved Sideband Cooling of a Micromechanical Oscillator
Micro- and nanoscale opto-mechanical systems provide radiation pressure
coupling of optical and mechanical degree of freedom and are actively pursued
for their ability to explore quantum mechanical phenomena of macroscopic
objects. Many of these investigations require preparation of the mechanical
system in or close to its quantum ground state. Remarkable progress in ground
state cooling has been achieved for trapped ions and atoms confined in optical
lattices. Imperative to this progress has been the technique of resolved
sideband cooling, which allows overcoming the inherent temperature limit of
Doppler cooling and necessitates a harmonic trapping frequency which exceeds
the atomic species' transition rate. The recent advent of cavity back-action
cooling of mechanical oscillators by radiation pressure has followed a similar
path with Doppler-type cooling being demonstrated, but lacking inherently the
ability to attain ground state cooling as recently predicted. Here we
demonstrate for the first time resolved sideband cooling of a mechanical
oscillator. By pumping the first lower sideband of an optical microcavity,
whose decay rate is more than twenty times smaller than the eigen-frequency of
the associated mechanical oscillator, cooling rates above 1.5 MHz are attained.
Direct spectroscopy of the motional sidebands reveals 40-fold suppression of
motional increasing processes, which could enable reaching phonon occupancies
well below unity (<0.03). Elemental demonstration of resolved sideband cooling
as reported here should find widespread use in opto-mechanical cooling
experiments. Apart from ground state cooling, this regime allows realization of
motion measurement with an accuracy exceeding the standard quantum limit.Comment: 13 pages, 5 figure
Recent advances in experimental testing and computational modelling for characterisation of mechanical properties of biomaterials and biological cells
Biomaterials and biological cells possess a number of different properties; amongst them, mechanical properties are extremely important in studies and applications about tissue engineering, design and development of implants, surgical tools and medical devices for treatments and diagnosis of diseases. Changes in mechanical properties such as a stiffness of cells are often the signs of changes in cell physiology or diseases in tissues; and studying these changes can lead to the development of devices for early disease detection and new drug delivery mechanisms. This paper presents advances in recent years in experimental testing and computational modelling for characterisation of mechanical properties of biomaterials and biological cells, in which the presented research projects and related studies were mainly implemented by research groups in the UK. The recent important findings as well as research directions and challenges are emphasised and discussed, to open channels for research collaborations in development of cost-effective medical diagnosis and treatment solutions
Four-nucleon contact interactions from holographic QCD
We calculate the low energy constants of four-nucleon interactions in an
effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to
obtain meson-nucleon interactions and then integrate out massive mesons to
obtain the four-nucleon interactions in 4D. We end up with two low energy
constants at the leading order and seven of them at the next leading order,
which is consistent with the effective chiral Lagrangian. The values of the low
energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page
Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos
Phobos Laser Ranging (PLR) is a concept for a space mission designed to
advance tests of relativistic gravity in the solar system. PLR's primary
objective is to measure the curvature of space around the Sun, represented by
the Eddington parameter , with an accuracy of two parts in ,
thereby improving today's best result by two orders of magnitude. Other mission
goals include measurements of the time-rate-of-change of the gravitational
constant, and of the gravitational inverse square law at 1.5 AU
distances--with up to two orders-of-magnitude improvement for each. The science
parameters will be estimated using laser ranging measurements of the distance
between an Earth station and an active laser transponder on Phobos capable of
reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10
ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12
cm aperture will permit links that even at maximum range will exceed a photon
per second. A total measurement precision of 50 ps demands a few hundred
photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser
ranging (SLR) facilities--with appropriate augmentation--may be able to
participate in PLR. Since Phobos' orbital period is about 8 hours, each
observatory is guaranteed visibility of the Phobos instrument every Earth day.
Given the current technology readiness level, PLR could be started in 2011 for
launch in 2016 for 3 years of science operations. We discuss the PLR's science
objectives, instrument, and mission design. We also present the details of
science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
- …
