71 research outputs found

    Robust Co(II)-Based Metal-Organic Framework for the Efficient Uptake and Selective Detection of SO2

    Get PDF
    MUF-16 is a porous metal-organic framework comprising cobalt(II) ions and 5-aminoisophthalate ligands. Here, we measured its reversible SO2 adsorption-desorption isotherm around room temperature and up to 1 bar and observed a high capacity for SO2 (2.2 mmol g-1 at 298 K and 1 bar). The uptake of SO2 was characterized by Fourier transform infrared (FT-IR) spectroscopy, which indicated hydrogen bonding between the SO2 guest molecules and amino functional groups of the framework. The location and packing of the SO2 molecules were confirmed by computational studies, namely, density functional theory (DFT) calculations of the strongest adsorption site and grand canonical Monte Carlo (GCMC) simulations of the adsorption isotherm. Furthermore, MUF-16 showed a remarkable selective fluorescence response to SO2 compared to other gases (CO2, NO2, N2, O2, CH4, and water vapor). The possible fluorescence mechanism was determined by using time-resolved photoluminescence. Also, the limit of detection (LOD) was calculated to be 1.26 mM (∼80.72 ppm) in a tetrahydrofuran (THF) solution of SO2fals

    TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf

    Get PDF
    We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R∗ = 0.358 ± 0.015 R, M∗ = 0.340 ± 0.009 M). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 ± 0.03 RJ and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 ± 0.12) and measured the mass of the planet (0.273 ± 0.006 MJ). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 ME) found around mid to late M dwarfs (<0.4 R), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 ± 0.09) with an orbital period of 427 ± 7 days and a minimum mass of 1.66 ± 0.26 MJ, but additional data would be needed to confirm this

    First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment

    Get PDF
    The LUX-ZEPLIN experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LUX-ZEPLIN's first search for weakly interacting massive particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross sections for WIMP masses above 9 GeV/c2. The most stringent limit is set for spin-independent scattering at 36 GeV/c2, rejecting cross sections above 9.2×10-48 cm at the 90% confidence level

    Use of patients’ classification instruments: analysis of the brazilian production of knowledge

    Get PDF
    Objective To analyze the production of scientific knowledge about the use of patients’ classification instruments in care and management practice in Brazil. Method Integrative literature review with databases search in: Latin American and Caribbean Literature on Health Sciences (LILACS), Medical Literature Analysis and Retrieval System on-line (MEDLINE), Cumulative Index to Nursing and Allied Health Literature (CINAHL) and SCOPUS, between January 2002 through December 2013. Results 1,194 studies were found, 31 met the inclusion criteria. We observed a higher number of studies in the category care plans and workload (n=15), followed by the category evaluation of psychometric properties (n=14). Conclusion Brazilian knowledge production has not yet investigated some purposes of using instruments for classifying patients in professional nursing practice. The identification of unexplored areas can guide future research on the topic

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    LUX-ZEPLIN (LZ) Conceptual Design Report

    Get PDF
    The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c2 to hundreds of TeV/c2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experiment is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF
    LUX-ZEPLIN (LZ) is a second-generation direct dark matter experiment with spin-independent WIMP-nucleon scattering sensitivity above 1.4×10−48cm2 for a WIMP mass of 40GeV/c2 and a 1000days exposure. LZ achieves this sensitivity through a combination of a large 5.6t fiducial volume, active inner and outer veto systems, and radio-pure construction using materials with inherently low radioactivity content. The LZ collaboration performed an extensive radioassay campaign over a period of six years to inform material selection for construction and provide an input to the experimental background model against which any possible signal excess may be evaluated. The campaign and its results are described in this paper. We present assays of dust and radon daughters depositing on the surface of components as well as cleanliness controls necessary to maintain background expectations through detector construction and assembly. Finally, examples from the campaign to highlight fixed contaminant radioassays for the LZ photomultiplier tubes, quality control and quality assurance procedures through fabrication, radon emanation measurements of major sub-systems, and bespoke detector systems to assay scintillator are presented

    The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs

    Get PDF
    corecore