382 research outputs found
Quantum Measurement Theory in Gravitational-Wave Detectors
The fast progress in improving the sensitivity of the gravitational-wave (GW)
detectors, we all have witnessed in the recent years, has propelled the
scientific community to the point, when quantum behaviour of such immense
measurement devices as kilometer-long interferometers starts to matter. The
time, when their sensitivity will be mainly limited by the quantum noise of
light is round the corner, and finding the ways to reduce it will become a
necessity. Therefore, the primary goal we pursued in this review was to
familiarize a broad spectrum of readers with the theory of quantum measurements
in the very form it finds application in the area of gravitational-wave
detection. We focus on how quantum noise arises in gravitational-wave
interferometers and what limitations it imposes on the achievable sensitivity.
We start from the very basic concepts and gradually advance to the general
linear quantum measurement theory and its application to the calculation of
quantum noise in the contemporary and planned interferometric detectors of
gravitational radiation of the first and second generation. Special attention
is paid to the concept of Standard Quantum Limit and the methods of its
surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in
Relativit
Antikaon production in nucleon-nucleon reactions near threshold
The antikaon production cross section from nucleon-nucleon reactions near
threshold is studied in a meson exchange model. We include both pion and kaon
exchange, but neglect the interference between the amplitudes. In case of pion
exchange the antikaon production cross section can be expressed in terms of the
antikaon production cross section from a pion-nucleon interaction, which we
take from the experimental data if available. Otherwise, a -resonance
exchange model is introduced to relate the different reaction cross sections.
In case of kaon exchange the antikaon production cross section is related to
the elastic and cross sections, which are again taken from
experimental measurements. We find that the one-meson exchange model gives a
satisfactory fit to the available data for the cross section
at high energies. We compare our predictions for the cross section near
threshold with an earlier empirical parameterization and that from phase space
models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.
Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos
Phobos Laser Ranging (PLR) is a concept for a space mission designed to
advance tests of relativistic gravity in the solar system. PLR's primary
objective is to measure the curvature of space around the Sun, represented by
the Eddington parameter , with an accuracy of two parts in ,
thereby improving today's best result by two orders of magnitude. Other mission
goals include measurements of the time-rate-of-change of the gravitational
constant, and of the gravitational inverse square law at 1.5 AU
distances--with up to two orders-of-magnitude improvement for each. The science
parameters will be estimated using laser ranging measurements of the distance
between an Earth station and an active laser transponder on Phobos capable of
reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10
ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12
cm aperture will permit links that even at maximum range will exceed a photon
per second. A total measurement precision of 50 ps demands a few hundred
photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser
ranging (SLR) facilities--with appropriate augmentation--may be able to
participate in PLR. Since Phobos' orbital period is about 8 hours, each
observatory is guaranteed visibility of the Phobos instrument every Earth day.
Given the current technology readiness level, PLR could be started in 2011 for
launch in 2016 for 3 years of science operations. We discuss the PLR's science
objectives, instrument, and mission design. We also present the details of
science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer
Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH
Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements
Corrections to Newton's gravitational law inspired by extra dimensional
physics and by the exchange of light and massless elementary particles between
the atoms of two macrobodies are considered. These corrections can be described
by the potentials of Yukawa-type and by the power-type potentials with
different powers. The strongest up to date constraints on the corrections to
Newton's gravitational law are reviewed following from the E\"{o}tvos- and
Cavendish-type experiments and from the measurements of the Casimir and van der
Waals force. We show that the recent measurements of the Casimir force gave the
possibility to strengthen the previously known constraints on the constants of
hypothetical interactions up to several thousand times in a wide interaction
range. Further strengthening is expected in near future that makes Casimir
force measurements a prospective test for the predictions of fundamental
physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of
the 18th Course of the School on Cosmology and Gravitation: The Gravitational
Constant. Generalized Gravitational Theories and Experiments (30 April- 10
May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata,
20pp. (Kluwer, in print, 2003
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM(4-) siderophore analogues of varied linker length
Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM(4-)) to five, six and eight (5-, 6-, 8-LICAM(4-), respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM(4-) structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM(4-) is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM(4-) but decreases for 6- and 8-LICAM(4-). The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288
Interplay of Protein and DNA Structure Revealed in Simulations of the lac Operon
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information. © 2013 Czapla et al
- …
