260 research outputs found
Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth
Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells
Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed
Shallow conductance decay along the heme array of a single tetraheme protein wire
Multiheme cytochromes (MHCs) are the building blocks of highly conductive micrometre-long supramolecular wires found in so-called electrical bacteria. Recent studies have revealed that these proteins possess a long supramolecular array of closely packed heme cofactors along the main molecular axis alternating between perpendicular and stacking configurations (TST = T-shaped, stacked, T-shaped). While TST arrays have been identified as the likely electron conduit, the mechanisms of outstanding long-range charge transport observed in these structures remain unknown. Here we study charge transport on individual small tetraheme cytochromes (STCs) containing a single TST heme array. Individual STCs are trapped in a controllable nanoscale tunnelling gap. By modulating the tunnelling gap separation, we are able to selectively probe four different electron pathways involving 1, 2, 3 and 4 heme cofactors, respectively, leading to the determination of the electron tunnelling decay constant along the TST heme motif. Conductance calculations of selected single-STC junctions are in excellent agreement with experiments and suggest a mechanism of electron tunnelling with shallow length decay constant through an individual STC. These results demonstrate that an individual TST motif supporting electron tunnelling might contribute to a tunnelling-assisted charge transport diffusion mechanism in larger TST associations
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector
Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230–480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos
The Emergence of Candida auris is Not Associated with Changes in Antifungal Prescription at Hospitals
Shuk-Ching Wong,1 Pui-Hing Chau,2 Hong Chen,3 Simon Yung-Chun So,4 Kelvin Hei-Yeung Chiu,4 Jonathan Hon-Kwan Chen,4 Xin Li,5 Celine Sze-Ling Chui,2,6 Kwok-Yung Yuen,5 Vincent Chi-Chung Cheng1,4 1Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, People’s Republic of China; 2School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China; 3Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, People’s Republic of China; 4Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People’s Republic of China; 5School of Clinical Medicine, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China; 6School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of ChinaCorrespondence: Vincent Chi-Chung Cheng, Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, People’s Republic of China, Tel +852-22552351, Fax +852-23523698, Email [email protected]: This study describes the emergence of Candida auris in Hong Kong, focusing on the incidence and trends of different Candida species over time. Additionally, the study analyzes the relationship between C. auris and antifungal prescription, as well as the impact of outbreaks caused by C. auris.Patients and Methods: Data were collected from 43 public hospitals across seven healthcare networks (A to G) in Hong Kong, including Candida species culture and antifungal prescription information. Among 150,267 patients with 206,405 hospitalization episodes, 371,653 specimens tested positive for Candida species. Trends in Candida species and antifungal prescription were analyzed before (period 1: 2015 1Q to 2019 1Q) and after (period 2: 2019 2Q to 2023 2Q) the emergence of C. auris in Hong Kong.Results: Candida albicans was the most prevalent species, accounting for 57.1% (212,163/371,653) of isolations, followed by Candida glabrata (13.1%, 48,666), Candida tropicalis (9.2%, 34,261), and Candida parapsilosis (5.3%, 19,688). C. auris represented 2.0% of all Candida species isolations. Comparing period 2 to period 1, the trend of C. albicans remained stable, while C. glabrata, C. tropicalis, and C. parapsilosis demonstrated a slower increasing trend in period 2 than in period 1. Other species, including C. auris, exhibited a 1.1% faster increase in trend during period 2 compared to period 1. Network A, with the highest antifungal prescription, did not experience any outbreaks, while networks F and G had 40 hospital outbreaks due to C. auris in period 2. Throughout the study period, healthcare networks B to G had significantly lower antifungal prescription compared to network A, ranging from 54% to 78% less than that of network A.Conclusion: There is no evidence showing correlation between the emergence of C. auris and antifungal prescription in Hong Kong. Proactive infection control measures should be implemented to prevent nosocomial transmission and outbreak of C. auris.Keywords: epidemiology, outbreak, antifungal prescription, infection control measur
Apobec 3G Efficiently Reduces Infectivity of the Human Exogenous Gammaretrovirus XMRV
The human exogenous gammaretrovirus XMRV is thought to be implicated in prostate cancer and chronic fatigue syndrome. Besides pressing epidemiologic questions, the elucidation of the tissue and cell tropism of the virus, as well as its sensitivity to retroviral restriction factors is of fundamental importance. The Apobec3 (A3) proteins, a family of cytidine deaminases, are one important group of host proteins that control primary infection and efficient viral spread.Here we demonstrate that XMRV is resistant to human Apobec 3B, 3C and 3F, while being highly susceptible to the human A3G protein, a factor which is known to confer antiviral activity against most retroviruses. We show that XMRV as well as MoMLV virions package Apobec proteins independent of their specific restriction activity. hA3G was found to be a potent inhibitor of XMRV as well as of MoMLV infectivity. In contrast to MoMLV, XMRV infection can also be partially reduced by low concentrations of mA3. Interestingly, established prostate cancer cell lines, which are highly susceptible to XMRV infection, do not or only weakly express hA3G.Our findings confirm and extend recently published data that show restriction of XMRV infection by hA3G. The results will be of value to explore which cells are infected with XMRV and efficiently support viral spread in vivo. Furthermore, the observation that XMRV infection can be reduced by mA3 is of interest with regard to the current natural reservoir of XMRV infection
Subcellular Localization of SUN2 Is Regulated by Lamin A and Rab5
SUN2 is an inner nuclear membrane protein with a conserved Sad1/UNC-84 homology SUN-domain at the C-terminus. Intriguingly, SUN2 has also been reported to interact with Rab5, which localizes in early endosomes. To clarify the dual subcellular localization of SUN2, we investigated its localization in lamin A/C deficient cells rescued with lamin A or lamin C isoform, and in HeLa cells transfected with Rab5 or its mutants. We found that expression of lamin A but not lamin C partly restored the nuclear envelope localization of SUN2. SUN2 was redistributed to endosomes upon overexpression of Rab5, but remained on the nuclear envelope when the SUN domain was deleted. To explore the physiological function of SUN2 in vesicle trafficking and endocytosis, we demonstrated the colocalization of endogenous SUN2 and Rab5. Moreover, overexpression of SUN2 stimulated the uptake of transferrin while suppression of SUN2 expression attenuated the process. These findings support a role of SUN2 in endocytosis
Elderly persons in the risk zone. Design of a multidimensional, health-promoting, randomised three-armed controlled trial for "prefrail" people of 80+ years living at home
Background The very old (80+) are often described as a "frail" group that is particularly exposed to diseases and functional disability. They are at great risk of losing the ability to manage their activities of daily living independently. A health-promoting intervention programme might prevent or delay dependence in activities of daily life and the development of functional decline. Studies have shown that those who benefit most from a health-promoting and disease-preventive programme are persons with no, or discrete, activity restrictions. The three-armed study "Elderly in the risk zone" is designed to evaluate if multi-dimensional and multi-professional educational senior meetings are more effective than preventive home visits, and if it is possible to prevent or delay deterioration if an intervention is made when the persons are not so frail. In this paper the study design, the intervention and the outcome measures as well as the baseline characteristics of the study participants are presented. Methods/Design The study is a randomised three-armed single-blind controlled trial with follow-ups 3 months, 1 and 2 years. The study group should comprise a representative sample of pre-frail 80-year old persons still living at home in two municipalities of Gothenburg. To allow for drop-outs, it was estimated that a total of about 450 persons would need to be included in the study. The participants should live in their ordinary housing and not be dependent on the municipal home help service or care. Further, they should be independent of help from another person in activities of daily living and be cognitively intact, having a score of 25 or higher as assessed with the Mini Mental State Examination (MMSE). Discussion We believe that the design of the study, the randomisation procedure, outcome measurements and the study protocol meetings should ensure the quality of the study. Furthermore, the multi-dimensionality of the intervention, the involvement of both the professionals and the senior citizens in the planning of the
intervention should have the potential to effectively target the heterogeneous needs of the
elderly. Trial registration ClinicalTrials.gov, NCT0087705
C-Jun N-terminal kinase (JNK) isoforms play differing roles in otitis media
BACKGROUND: Innate immunity and tissue proliferation play important roles in otitis media (OM), the most common disease of childhood. CJUN terminal kinase (JNK) is potentially involved in both processes. RESULTS: Genes involved in both innate immune and growth factor activation of JNK are upregulated during OM, while expression of both positive and negative JNK regulatory genes is altered. When compared to wildtypes (WTs), C57BL/6 mice deficient in JNK1 exhibit enhanced mucosal thickening, with delayed recovery, enhanced neutrophil recruitment early in OM, and delayed bacterial clearance. In contrast, JNK2(−/−) mice exhibit delayed mucosal hyperplasia that eventually exceeds that of WTs and is slow to recover, delayed recruitment of neutrophils, and failure of bacterial clearance. CONCLUSIONS: The results suggest that JNK1 and JNK2 play primarily opposing roles in mucosal hyperplasia and neutrophil recruitment early in OM. However, both isoforms are required for the normal resolution of middle ear infection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12865-014-0046-z) contains supplementary material, which is available to authorized users
- …
