24 research outputs found

    Alteration assemblages in Martian meteorites: implications for near-surface processes

    Get PDF
    The SNC (Shergotty-Nakhla-Chassigny) meteorites have recorded interactions between martian crustal fluids and the parent igneous rocks. The resultant secondary minerals – which comprise up to 1 vol.% of the meteorites – provide information about the timing and nature of hydrous activity and atmospheric processes on Mars. We suggest that the most plausible models for secondary mineral formation involve the evaporation of low temperature (25 – 150 °C) brines. This is consistent with the simple mineralogy of these assemblages – Fe-Mg-Ca carbonates, anhydrite, gypsum, halite, clays – and the chemical fractionation of Ca-to Mg-rich carbonate in ALH84001 "rosettes". Longer-lived, and higher temperature, hydrothermal systems would have caused more silicate alteration than is seen and probably more complex mineral assemblages. Experimental and phase equilibria data on carbonate compositions similar to those present in the SNCs imply low temperatures of formation with cooling taking place over a short period of time (e.g. days). The ALH84001 carbonate also probably shows the effects of partial vapourisation and dehydration related to an impact event post-dating the initial precipitation. This shock event may have led to the formation of sulphide and some magnetite in the Fe-rich outer parts of the rosettes. Radiometric dating (K-Ar, Rb-Sr) of the secondary mineral assemblages in one of the nakhlites (Lafayette) suggests that they formed between 0 and 670 Myr, and certainly long after the crystallisation of the host igneous rocks. Crystallisation of ALH84001 carbonate took place 0.5 Gyr after the parent rock. These age ranges and the other research on these assemblages suggest that environmental conditions conducive to near-surface liquid water have been present on Mars periodically over the last 1 Gyr. This fluid activity cannot have been continuous over geological time because in that case much more silicate alteration would have taken place in the meteorite parent rocks and the soluble salts would probably not have been preserved. The secondary minerals could have been precipitated from brines with seawater-like composition, high bicarbonate contents and a weakly acidic nature. The co-existence of siderite (Fe-carbonate) and clays in the nakhlites suggests that the pCO2 level in equilibrium with the parent brine may have been 50 mbar or more. The brines could have originated as flood waters which percolated through the top few hundred meters of the crust, releasing cations from the surrounding parent rocks. The high sulphur and chlorine concentrations of the martian soil have most likely resulted from aeolian redistribution of such aqueously-deposited salts and from reaction of the martian surface with volcanic acid volatiles. The volume of carbonates in meteorites provides a minimum crustal abundance and is equivalent to 50–250 mbar of CO2 being trapped in the uppermost 200–1000 m of the martian crust. Large fractionations in 18O between igneous silicate in the meteorites and the secondary minerals (30) require formation of the latter below temperatures at which silicate-carbonate equilibration could have taken place (400°C) and have been taken to suggest low temperatures (e.g. 150°C) of precipitation from a hydrous fluid

    Management of HIV-associated tuberculosis in resource-limited settings: a state-of-the-art review.

    Get PDF
    The HIV-associated tuberculosis (TB) epidemic remains a huge challenge to public health in resource-limited settings. Reducing the nearly 0.5 million deaths that result each year has been identified as a key priority. Major progress has been made over the past 10 years in defining appropriate strategies and policy guidelines for early diagnosis and effective case management. Ascertainment of cases has been improved through a twofold strategy of provider-initiated HIV testing and counseling in TB patients and intensified TB case finding among those living with HIV. Outcomes of rifampicin-based TB treatment are greatly enhanced by concurrent co-trimoxazole prophylaxis and antiretroviral therapy (ART). ART reduces mortality across a spectrum of CD4 counts and randomized controlled trials have defined the optimum time to start ART. Good outcomes can be achieved when combining TB treatment with first-line ART, but use with second-line ART remains challenging due to pharmacokinetic drug interactions and cotoxicity. We review the frequency and spectrum of adverse drug reactions and immune reconstitution inflammatory syndrome (IRIS) resulting from combined treatment, and highlight the challenges of managing HIV-associated drug-resistant TB

    The high-resolution imaging science experiment (HiRISE) in the MRO extended science phases (2009–2023)

    No full text
    The Mars Reconnaissance Orbiter has been orbiting Mars since 2006 and has acquired >80,000 HiRISE images with sub-meter resolution, contributing to over 2000 peer-reviewed publications, and has provided the data needed to enable safe surface landings in key locations by several rovers or landers. This paper describes the changes to science planning, data processing, and analysis tools since the initial Primary Science Phase in 2006–2008. These changes affect the data used or requested by the community and how they should interpret the data. There have been a variety of complications to the dataset over the years, such as gaps in monitoring due to spacecraft and instrument issues and special events like the arrival of new landers or rovers on Mars or global dust storms. The HiRISE optics have performed well except for a period when temperature uniformity was perturbed, reducing the resolution of some images. The focal plane system now has 12 rather than 14 operational detectors. The first failure (2011) was a unit at the edge of the swath width, reducing image width by 10% rather than creating a gap. The recent (2023) failure was in the middle of the swath. An unusual problem with the analog-to-digital conversion of the signal (resulting in erroneous data) has worsened over time; mitigation steps so far have preserved full-resolution imaging over all functional detectors. Soon, full-resolution imaging will be narrowed to a subset of the detectors and there will be more 2 × 2 binned data. We describe lessons received for future very high-resolution orbital imaging. We continue to invite all interested people to suggest HiRISE targets on Mars via HiWish, and to explore the easy-to-use publicly available images.</p
    corecore