420 research outputs found
The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.
RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-
Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC
Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators
Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector
Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230–480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos
MS-275 synergistically enhances the growth inhibitory effects of RAMBA VN/66-1 in hormone-insensitive PC-3 prostate cancer cells and tumours
Combining drugs, which target different signalling pathways, often decreases adverse side effects while increasing the efficacy of treatment. The objective of our study was to determine if the combination of our novel atypical retinoic acid metabolism-blocking agent (RAMBA) VN/66-1 and a promising histone deacetylase inhibitor N-(2-aminophenyl)4-[N-(pyridine-3-yl-methoxy-carbonyl)aminomethyl]benzamide (MS-275) would show enhanced antineoplastic activity on human PC-3 prostate cancer cells/tumours and also to decipher the molecular mechanisms of action. The combination of VN/66-1+MS-275 was found to be synergistic in inhibiting PC-3 cell growth, caused cell cytostaticity/cytotoxicity and induced marked G2/M phase arrest and apoptosis. In mice with well-established PC-3 tumours, VN/66-1 (5 and 10 mg kg−1 day−1) caused significant suppression of tumour growth compared with mice receiving vehicle alone. Furthermore, treatment with VN/66-1 (10 mg kg−1 day−1)+MS-275 (2.5 mg kg−1 day−1) for 18 days resulted in an 85% reduction in final mean tumour volume compared with control and was more effective than either agent alone. Mechanistic studies indicated that treatment of PC-3 cells/tumours with VN/66-1+MS-275 caused DNA damage (upregulation of γH2AX), hyperacetylation of histones H3 and H4, upregulation of retinoic acid receptor-β, p21WAF1/CIP1, E-cadherin, and Bad and downregulation of Bcl-2. These data suggest that the mechanism of action of the combination of agents is DNA damage-induced p21 activation, resulting in inhibition of the Cdc2/cyclin B complex and accumulation of cells in G2/M phase. In addition, the combination caused modulation and induction of apoptosis. These results suggest that VN/66-1 or its combination with MS-275 may be a novel therapy for the treatment of prostate carcinoma
Continuous and Periodic Expansion of CAG Repeats in Huntington's Disease R6/1 Mice
Huntington's disease (HD) is one of several neurodegenerative disorders caused by expansion of CAG repeats in a coding gene. Somatic CAG expansion rates in HD vary between organs, and the greatest instability is observed in the brain, correlating with neuropathology. The fundamental mechanisms of somatic CAG repeat instability are poorly understood, but locally formed secondary DNA structures generated during replication and/or repair are believed to underlie triplet repeat expansion. Recent studies in HD mice have demonstrated that mismatch repair (MMR) and base excision repair (BER) proteins are expansion inducing components in brain tissues. This study was designed to simultaneously investigate the rates and modes of expansion in different tissues of HD R6/1 mice in order to further understand the expansion mechanisms in vivo. We demonstrate continuous small expansions in most somatic tissues (exemplified by tail), which bear the signature of many short, probably single-repeat expansions and contractions occurring over time. In contrast, striatum and cortex display a dramatic—and apparently irreversible—periodic expansion. Expansion profiles displaying this kind of periodicity in the expansion process have not previously been reported. These in vivo findings imply that mechanistically distinct expansion processes occur in different tissues
Improvement of the Trivalent Inactivated Flu Vaccine Using PapMV Nanoparticles
Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.g., nucleocapsid (NP) and matrix proteins (M1), are present in the vaccine, but are not immunogenic. To improve the protection provided by these vaccines, we used nanoparticles made of the coat protein of a plant virus (papaya mosaic virus; PapMV) as an adjuvant. Immunization of mice and ferrets with the adjuvanted formulation increased the magnitude and breadth of the humoral response to NP and to highly conserved regions of HA. They also triggered a cellular mediated immune response to NP and M1, and long-lasting protection in animals challenged with a heterosubtypic influenza strain (WSN/33). Thus, seasonal flu vaccine adjuvanted with PapMV nanoparticles can induce universal protection to influenza, which is a major advancement when facing a pandemic
Identification of bacterial glycosidases in rat cecal contents
Cecal contents of conventional and germfree rats were examined for glycosidases which may have a role in degrading glycoprotein oligosaccharides. Utilizing p-nitrophenylglycosides as substrates, we identified glycosidases in bacteria-free supernatants from cecal contents which act on β-linkages. These cecal glycosidases appear to be of bacterial origin since: (1) direct comparisons of the enzymes in similar contents from germfree rats showed negligible activities; (2) most of the glycosidase levels in bacterial extracts were at least as high as those of soluble supernatants; and (3) disk gel electrophoresis of contents and bacterial extracts revealed in both preparations a β- N -acetylglucosaminidase band with similar R f s. Also, the blood group B antigenicity of germfree cecal glycoproteins was greatly decreased by conventional cecal contents. These findings indicate that β-galactosidase and β- N -acetylgalactosaminidase in cecal contents are bacterial in origin, and they may have a role in the bacterial catabolism of intestinal glycoproteins.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44391/1/10620_2005_Article_BF01309607.pd
Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature America for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 12 (2009): 864-871, doi:10.1038/nn.2346.Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular
process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt)
inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid),
but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT
through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK
was observed in vivo in cellular and animal HD models. Additional experiments indicate that
polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously
expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass
spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this
modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical
mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of
FAT.This work was supported by 2007/2008 MBL summer fellowship to GM; an HDSA
grant to GM; NIH grants MH066179 to GB; and ALSA, Muscular Dystrophy Association, and NIH
(NS23868, NS23320, NS41170) grants to STB
Clinical and Functional Characterization of URAT1 Variants
Idiopathic renal hypouricaemia is an inherited form of hypouricaemia, associated with abnormal renal handling of uric acid. There is excessive urinary wasting of uric acid resulting in hypouricaemia. Patients may be asymptomatic, but the persistent urinary abnormalities may manifest as renal stone disease, and hypouricaemia may manifest as exercise induced acute kidney injury. Here we have identified Macedonian and British patients with hypouricaemia, who presented with a variety of renal symptoms and signs including renal stone disease, hematuria, pyelonephritis and nephrocalcinosis. We have identified heterozygous missense mutations in SLC22A12 encoding the urate transporter protein URAT1 and correlate these genetic findings with functional characterization. Urate handling was determined using uptake experiments in HEK293 cells. This data highlights the importance of the URAT1 renal urate transporter in determining serum urate concentrations and the clinical phenotypes, including nephrolithiasis, that should prompt the clinician to suspect an inherited form of renal hypouricaemia
Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis
<p>Abstract</p> <p>Background</p> <p>A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture.</p> <p>Methods</p> <p>RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines.</p> <p>Results</p> <p>Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death.</p> <p>Conclusion</p> <p>Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery.</p
- …
