6,716 research outputs found
Evolving solitons in bubbly flows
At the end of the sixties, it was shown that pressure waves in a bubbly liquid obey the KdV equation, the nonlinear term coming from convective acceleration and the dispersive term from volume oscillations of the bubbles.\ud
For a variableu, proportional to –p, wherep denotes pressure, the appropriate KdV equation can be casted in the formu t –6uu x +u xxx =0. The theory of this equation predicts that, under certain conditions, solitons evolve from an initial profileu(x,0). In particular, it can be shown that the numberN of those solitons can be found from solving the eigenvalue problem xx–u(x,0)=0, with(0)=1 and(0)=0.N is found from counting the zeros of the solution of this equation betweenx=0 andx=Q, say,Q being determined by the shape ofu(x,0). We took as an initial pressure profile a Shockwave, followed by an expansion wave. This can be realised in the laboratory and the problem, formulated above, can be solved exactly.\ud
In this contribution the solution is outlined and it is shown from the experimental results that from the said initial disturbance, indeed solitons evolve in the predicated quantity.\u
Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime
In this note, we consider confining gauge theories in defined by
or compactification of higher-dimensional conformal field theories
with gravity duals. We investigate the behavior of these theories on de Sitter
spacetime as a function of the Hubble parameter. We find that in each case, the
de Sitter vacuum state of the field theory (defined by Euclidian continuation
from a sphere) undergoes a deconfinement transition as the Hubble parameter is
increased past a critical value. In each case, the corresponding critical de
Sitter temperature is smaller than the corresponding Minkowski-space
deconfinement temperature by a factor nearly equal to the dimension of the de
Sitter spacetime. The behavior is qualitatively and quantitatively similar to
that for confining theories defined by compactification of CFTs, studied
recently in arXiv:1007.3996.Comment: 25 pages, 7 figure
Recommended from our members
Direct and indirect effects of rotavirus vaccination: Comparing predictions from transmission dynamic models
Early observations from countries that have introduced rotavirus vaccination suggest that there may be indirect protection for unvaccinated individuals, but it is unclear whether these benefits will extend to the long term. Transmission dynamic models have attempted to quantify the indirect protection that might be expected from rotavirus vaccination in developed countries, but results have varied. To better understand the magnitude and sources of variability in model projections, we undertook a comparative analysis of transmission dynamic models for rotavirus. We fit five models to reported rotavirus gastroenteritis (RVGE) data from England and Wales, and evaluated outcomes for short- and long-term vaccination effects. All of our models reproduced the important features of rotavirus epidemics in England and Wales. Models predicted that during the initial year after vaccine introduction, incidence of severe RVGE would be reduced 1.8-2.9 times more than expected from the direct effects of the vaccine alone (28-50% at 90% coverage), but over a 5-year period following vaccine introduction severe RVGE would be reduced only by 1.1-1.7 times more than expected from the direct effects (54-90% at 90% coverage). Projections for the long-term reduction of severe RVGE ranged from a 55% reduction at full coverage to elimination with at least 80% coverage. Our models predicted short-term reductions in the incidence of RVGE that exceeded estimates of the direct effects, consistent with observations from the United States and other countries. Some of the models predicted that the short-term indirect benefits may be offset by a partial shifting of the burden of RVGE to older unvaccinated individuals. Nonetheless, even when such a shift occurs, the overall reduction in severe RVGE is considerable. Discrepancies among model predictions reflect uncertainties about age variation in the risk and reporting of RVGE, and the duration of natural and vaccine-induced immunity, highlighting important questions for future research
Agroecology and Climate Change Resilience: In Smallholder Coffee Agroecosystems of Central America
Arabica coffee production provides the principal
source of monetary income for many smallholder
households throughout the mountainous regions
of Central America. Coffee agroecosystems serve
several functions, which can include supporting
livelihoods, and providing ecosystem services (e.g.
carbon sequestration), and conserving biodiversity
(De Beenhouwer et al., 2013; Valencia et al., 2014).
For these reasons, coffee farming plays a key
synergistic role in socioeconomic and ecological
resilience. Despite these synergies, the livelihoods
of Central American smallholder coffee farmers
are in a precarious state due to their exposure and
sensitivity to common stressors and shocks, including
the seasonality of incomes, volatile commodity
prices and natural disasters (Jha et al., 2014). This
vulnerability makes it extremely difficult for growers to
maintain (let alone build) their assets and capabilities,
and to embark on pathways out of poverty
ARSENIC REMOVAL FROM GROUNDWATER BY IRON CO PRECIPITATION IN CONTACT FILTER
Joint Research on Environmental Science and Technology for the Eart
Numerical instability of the Akhmediev breather and a finite-gap model of it
In this paper we study the numerical instabilities of the NLS Akhmediev
breather, the simplest space periodic, one-mode perturbation of the unstable
background, limiting our considerations to the simplest case of one unstable
mode. In agreement with recent theoretical findings of the authors, in the
situation in which the round-off errors are negligible with respect to the
perturbations due to the discrete scheme used in the numerical experiments, the
split-step Fourier method (SSFM), the numerical output is well-described by a
suitable genus 2 finite-gap solution of NLS. This solution can be written in
terms of different elementary functions in different time regions and,
ultimately, it shows an exact recurrence of rogue waves described, at each
appearance, by the Akhmediev breather. We discover a remarkable empirical
formula connecting the recurrence time with the number of time steps used in
the SSFM and, via our recent theoretical findings, we establish that the SSFM
opens up a vertical unstable gap whose length can be computed with high
accuracy, and is proportional to the inverse of the square of the number of
time steps used in the SSFM. This neat picture essentially changes when the
round-off error is sufficiently large. Indeed experiments in standard double
precision show serious instabilities in both the periods and phases of the
recurrence. In contrast with it, as predicted by the theory, replacing the
exact Akhmediev Cauchy datum by its first harmonic approximation, we only
slightly modify the numerical output. Let us also remark, that the first rogue
wave appearance is completely stable in all experiments and is in perfect
agreement with the Akhmediev formula and with the theoretical prediction in
terms of the Cauchy data.Comment: 27 pages, 8 figures, Formula (30) at page 11 was corrected, arXiv
admin note: text overlap with arXiv:1707.0565
PILOT SCALE STUDY ON AMMONIUM REMOVAL IN PHAP VAN WATER PLANT, HANOI CITY
Joint Research on Environmental Science and Technology for the Eart
Holographic Geometry of Entanglement Renormalization in Quantum Field Theories
We study a conjectured connection between the AdS/CFT and a real-space
quantum renormalization group scheme, the multi-scale entanglement
renormalization ansatz (MERA). By making a close contact with the holographic
formula of the entanglement entropy, we propose a general definition of the
metric in the MERA in the extra holographic direction, which is formulated
purely in terms of quantum field theoretical data. Using the continuum version
of the MERA (cMERA), we calculate this emergent holographic metric explicitly
for free scalar boson and free fermions theories, and check that the metric so
computed has the properties expected from AdS/CFT. We also discuss the cMERA in
a time-dependent background induced by quantum quench and estimate its
corresponding metric.Comment: 42pages, 9figures, reference added, minor chang
Identification of acute myocardial infarction from electronic healthcare records using different disease coding systems
Objective: To evaluate positive predictive value (PPV) of different disease codes and free text in identifying acute myocardial infarction (AMI) from electronic healthcare records (EHRs). Design: Validation study of cases of AMI identified from general practitioner records and hospital discharge diagnoses using free text and codes from the International Classification of Primary Care (ICPC), International Classification of Diseases 9th revision-clinical modification (ICD9-CM) and ICD-10th revision (ICD-10). Setting: Population-based databases comprising routinely collected data from primary care in Italy and the Netherlands and from secondary care in Denmark from 1996 to 2009. Participants: A total of 4 034 232 individuals with 22 428 883 person-years of follow-up contributed to the data, from which 42 774 potential AMI cases were identified. A random sample of 800 cases was subsequently obtained for validation. Main outcome measures: PPVs were calculated overall and for each code/free text. 'Best-case scenario' and 'worst-case scenario' PPVs were calculated, the latter taking into account non-retrievable/non-assessable cases. We further assessed the effects of AMI misclassification on estimates of risk during drug exposure. Results: Records of 748 cases (93.5% of sample) were retrieved. ICD-10 codes had a 'best-case scenario' PPV of 100% while ICD9-CM codes had a PPV of 96.6% (95% CI 93.2% to 99.9%). ICPC codes had a 'best-case scenario' PPV of 75% (95% CI 67.4% to 82.6%) and free text had PPV ranging from 20% to 60%. Corresponding PPVs in the 'worst-case scenario' all decreased. Use of codes with lower PPV generally resulted in small changes in AMI risk during drug exposure, but codes with higher PPV resulted in attenuation of risk for positive associations. Conclusions: ICD9-CM and ICD-10 codes have good PPV in identifying AMI from EHRs; strategies are necessary to further optimise utility of ICPC codes and free-text search. Use of specific AMI disease codes in estimation of risk during drug exposure may lead to small but significant changes and at the expense of decreased precision
Shock waves in strongly coupled plasmas
Shock waves are supersonic disturbances propagating in a fluid and giving
rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can
be well described within the hydrodynamic approximation. On the other hand,
strong shocks are discontinuous within hydrodynamics and therefore probe the
microscopics of the theory. In this paper we consider the case of the strongly
coupled N=4 plasma whose microscopic description, applicable for scales smaller
than the inverse temperature, is given in terms of gravity in an asymptotically
space. In the gravity approximation, weak and strong shocks should be
described by smooth metrics with no discontinuities. For weak shocks we find
the dual metric in a derivative expansion and for strong shocks we use
linearized gravity to find the exponential tail that determines the width of
the shock. In particular we find that, when the velocity of the fluid relative
to the shock approaches the speed of light the penetration depth
scales as . We compare the results with second
order hydrodynamics and the Israel-Stewart approximation. Although they all
agree in the hydrodynamic regime of weak shocks, we show that there is not even
qualitative agreement for strong shocks. For the gravity side, the existence of
shock waves implies that there are disturbances of constant shape propagating
on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde
- …
