34 research outputs found
Recommended from our members
The development of an integrated multistaged fluid bed retorting process. Annual report, October 1, 1992--September 30, 1993
This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1992 through September 30, 1993 under Cooperative Agreement No. DE-FC21-90MC27286 with the Morgantown Energy Technology Center, US Department of Energy. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The PDU was assembled, instrumented and tested during this fiscal year. Along with the major activity of commissioning the 50-lb/hr retort, work was also completed in other areas. Basic studies of the cracking and coking kinetics of model compounds in a fixed bed reactor were continued. Additionally, as part of the effort to investigate niche market applications for KENTORT II-derived products, a study of the synthesis of carbon fibers from the heavy fraction of KENTORT II shale oil was initiated
Chemical thinning of flowers and fruits of the peach cultivar Coral with hydrogen cyanamide
Fitorreguladores no aumento da frutificação efetiva e partenocarpia em peras cv. Garber
Multi-criteria Analysis of Air Pollution with SO2 and PM10 in Urban Area Around the Copper Smelter in Bor, Serbia
Recommended from our members
The development of an integrated multistage fluid bed retorting process. Technical report, January 1, 1992--March 31, 1992
This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of January 1, 1992 through March 31, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The design of the 50-lb/hr KENTORT II retort was completed and fabrication is ready to begin. Data from the cold-flow model of the system and operating experience from the 5-lb/hr unit were used as the basis for the design. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors was continued. A mathematical model was implemented to characterize the important mass transfer effects of the system. This model will be eventually broadened to become a general fluidized bed coking model. In addition, experiments were performed to examine the effects of surface area, initial carbon content and steam treatment on coking activity. From the data that has been collected to-date, it appears that the coking activity of the tested substrates can be explained in terms of porosity (surface area and pore volume) and the initial carbon content of the solid
The development of an integrated multistage fluid bed retorting process. [KENTORT II process--50-lb/hr]
Recommended from our members
The development of an integrated multistage fluid bed retorting process. Annual report, September 1990--September 1991
This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II). The KENTORT II process includes integral fluidized bed zone for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work performed during this year involved projects that will contribute physical and chemical data for the final design of the 50-lb/hr retort. A cold-flow model of the 50-lb/hr retort was built and tested. The unit demonstrated stable operation and proper fluidization of all beds. Good control of solid recirculation up to the maximum design rate for each loop (200 and 500 lb/hr, respectively) was achieved simultaneously. Basically, the cold-flow model is completely operational and translation of the cold-flow design parameters to the design of the retort is ready to begin. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors passed over processed shales was initiated. The addition of a mass spectrometer to the system to monitor total carbon, nitrogen and sulfur evolution in real-time was successful. Coking activities of processed shales were ranked as follows: combusted shale > gasified shale > pyrolyzed shale. Arrangements for conducting an evaluation of KENTORT-derived oil for asphalt applications were finalized and testing was initiated
Recommended from our members
The development of an integrated multistage fluid bed retorting process. [Kentort II process--50-lb/hr]
This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of January 1, 1992 through March 31, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The design of the 50-lb/hr KENTORT II retort was completed and fabrication is ready to begin. Data from the cold-flow model of the system and operating experience from the 5-lb/hr unit were used as the basis for the design. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors was continued. A mathematical model was implemented to characterize the important mass transfer effects of the system. This model will be eventually broadened to become a general fluidized bed coking model. In addition, experiments were performed to examine the effects of surface area, initial carbon content and steam treatment on coking activity. From the data that has been collected to-date, it appears that the coking activity of the tested substrates can be explained in terms of porosity (surface area and pore volume) and the initial carbon content of the solid
Recommended from our members
The development of an integrated multistage fluid bed retorting process. [KENTORT II process--50-lb/hr]
This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II). The KENTORT II process includes integral fluidized bed zone for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work performed during this year involved projects that will contribute physical and chemical data for the final design of the 50-lb/hr retort. A cold-flow model of the 50-lb/hr retort was built and tested. The unit demonstrated stable operation and proper fluidization of all beds. Good control of solid recirculation up to the maximum design rate for each loop (200 and 500 lb/hr, respectively) was achieved simultaneously. Basically, the cold-flow model is completely operational and translation of the cold-flow design parameters to the design of the retort is ready to begin. In another aspect of the program, a study of the cracking and coking kinetics of shale oil vapors passed over processed shales was initiated. The addition of a mass spectrometer to the system to monitor total carbon, nitrogen and sulfur evolution in real-time was successful. Coking activities of processed shales were ranked as follows: combusted shale > gasified shale > pyrolyzed shale. Arrangements for conducting an evaluation of KENTORT-derived oil for asphalt applications were finalized and testing was initiated
