4,253 research outputs found

    Neutron polarisation analysis of Polymer: Fullerene blends for organic photovoltaics

    Get PDF
    The photogeneration process in polymer-fullerene organic solar cells relies strongly on the nanostructure and on the nano/picosecond dynamics occurring in these complex blends. Elastic and inelastic neutron scattering techniques are valuable tools with which to investigate those features in the appropriate time and space domains. In particular, quasi-elastic neutron scattering (QENS) connects useful structural and dynamical information by the measurement of dynamical incoherent (single particle) fluctuations in soft materials as a function of lengthscale. Extraction of these fluctuation rates can, however, be hampered by the presence of coherent contributions, originating from elastic scattering, and/or inelastic scattering modes which overlap in the space/time domain with the incoherent single-particle motions. As we have already seen in a previous study [1], this happens in poly(3-hexylthiophene) (P3HT) and [6,6]-Phenyl C61 butyric acid methyl ester (PCBM) solid blends, in which the coherent contribution arising from the PCBM crystalline phase seems to affect the interpretation of the polymer dynamics. Here, we utilise neutron polarisation analysis as an effective tool to separate coherent and incoherent contributions and make QENS data analysis of these blends more reliable

    Combining polynomial chaos expansions and genetic algorithm for the coupling of electrophysiological models

    Get PDF
    The number of computational models in cardiac research has grown over the last decades. Every year new models with di erent assumptions appear in the literature dealing with di erences in interspecies cardiac properties. Generally, these new models update the physiological knowledge using new equations which reect better the molecular basis of process. New equations require the fi tting of parameters to previously known experimental data or even, in some cases, simulated data. This work studies and proposes a new method of parameter adjustment based on Polynomial Chaos and Genetic Algorithm to nd the best values for the parameters upon changes in the formulation of ionic channels. It minimizes the search space and the computational cost combining it with a Sensitivity Analysis. We use the analysis of di ferent models of L-type calcium channels to see that by reducing the number of parameters, the quality of the Genetic Algorithm dramatically improves. In addition, we test whether the use of the Polynomial Chaos Expansions improves the process of the Genetic Algorithm search. We conclude that it reduces the Genetic Algorithm execution in an order of 103 times in the case studied here, maintaining the quality of the results. We conclude that polynomial chaos expansions can improve and reduce the cost of parameter adjustment in the development of new models.Peer ReviewedPostprint (author's final draft

    Dilaton Quantum Cosmology with a Schrodinger-like equation

    Full text link
    A quantum cosmological model with radiation and a dilaton scalar field is analysed. The Wheeler-deWitt equation in the mini-superspace induces a Schr\"odinger equation, which can be solved. An explicit wavepacket is constructed for a particular choice of the ordering factor. A consistent solution is possible only when the scalar field is a phantom field. Moreover, although the wavepacket is time dependent, a Bohmian analysis allows to extract a bouncing behaviour for the scale factor.Comment: 14 pages, 3 figures in eps format. Minors corrections, new figure

    Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO

    Full text link
    The design of spacecraft trajectories for missions visiting multiple celestial bodies is here framed as a multi-objective bilevel optimization problem. A comparative study is performed to assess the performance of different Beam Search algorithms at tackling the combinatorial problem of finding the ideal sequence of bodies. Special focus is placed on the development of a new hybridization between Beam Search and the Population-based Ant Colony Optimization algorithm. An experimental evaluation shows all algorithms achieving exceptional performance on a hard benchmark problem. It is found that a properly tuned deterministic Beam Search always outperforms the remaining variants. Beam P-ACO, however, demonstrates lower parameter sensitivity, while offering superior worst-case performance. Being an anytime algorithm, it is then found to be the preferable choice for certain practical applications.Comment: Code available at https://github.com/lfsimoes/beam_paco__gtoc

    Non-chiral current algebras for deformed supergroup WZW models

    Full text link
    We study deformed WZW models on supergroups with vanishing Killing form. The deformation is generated by the isotropic current-current perturbation which is exactly marginal under these assumptions. It breaks half of the global isometries of the original supergroup. The current corresponding to the remaining symmetry is conserved but its components are neither holomorphic nor anti-holomorphic. We obtain the exact two- and three-point functions of this current and a four-point function in the first two leading orders of a 1/k expansion but to all orders in the deformation parameter. We further study the operator product algebra of the currents, the equal time commutators and the quantum equations of motion. The form of the equations of motion suggests the existence of non-local charges which generate a Yangian. Possible applications to string theory on Anti-de Sitter spaces and to condensed matter problems are briefly discussed.Comment: 43 pages, Latex, one eps figure; v.2: minor corrections, a reference adde

    Holographic Hadrons in a Confining Finite Density Medium

    Full text link
    We study a sector of the hadron spectrum in the presence of finite baryon density. We use a non-supersymmetric gravity dual to a confining guage theory which exhibits a running dilaton. The interaction of mesons with the finite density medium is encoded in the dual theory by a force balancing between flavor D7-branes and a baryon vertex provided by a wrapped D5-brane. When the current quark mass m_q is sufficiently large, the meson mass reduces, exhibiting an interesting spectral flow as we increase the baryon density while it has a more complicated behaviour for very small m_q.Comment: 34 pages, 20 figures, errors for some figures are fixe

    Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli

    Get PDF
    The set of regulatory interactions between genes, mediated by transcription factors, forms a species' transcriptional regulatory network (TRN). By comparing this network with measured gene expression data one can identify functional properties of the TRN and gain general insight into transcriptional control. We define the subnet of a node as the subgraph consisting of all nodes topologically downstream of the node, including itself. Using a large set of microarray expression data of the bacterium Escherichia coli, we find that the gene expression in different subnets exhibits a structured pattern in response to environmental changes and genotypic mutation. Subnets with less changes in their expression pattern have a higher fraction of feed-forward loop motifs and a lower fraction of small RNA targets within them. Our study implies that the TRN consists of several scales of regulatory organization: 1) subnets with more varying gene expression controlled by both transcription factors and post-transcriptional RNA regulation, and 2) subnets with less varying gene expression having more feed-forward loops and less post-transcriptional RNA regulation.Comment: 14 pages, 8 figures, to be published in PLoS Computational Biolog

    Two-year clinical outcome from the Iberian registry patients after left atrial appendage closure

    Get PDF
    AIMS: The aim of this study was to observe the percentage of thromboembolic and haemorrhagic events over a 2-year follow-up in patients with non-valvular atrial fibrillation (NVAF) undergoing closure of the left atrial appendage (LAA) with an occlusion device. Observed events and CHADS2 (congestive heart failure, hypertension, age, diabetes, stroke history), CHA2DS2-VASc (also adding: vascular disease and sex) and HAS-BLED (hypertension, abnormal liver/renal function, stroke history, bleeding predisposition, labile international normalised ratios, elderly, drugs/alcohol use)-predicted events were compared. METHODS: LAA closure with an occlusion device was performed in 167 NVAF patients contraindicated for oral anticoagulants and recruited from 12 hospitals between 2009 and 2013. At least two transoesophageal echocardiograms were performed in the first 6 months postimplantation. Antithrombotics included clopidogrel and aspirin. Patients were monitored for death, stroke, major and relevant bleeding and hospitalisation for concomitant conditions. Mean age was 74.68±8.58, median follow-up was 24 months, 5.38% had intraoperative complications and implantation was successful in 94.6% of subjects. Mortality during follow-up was 10.8%, mostly (9.5%) non-cardiac related. Bleeding occurred in 10.1% of subjects, 5.7% major and 4.4% minor though relevant, and 4.4% suffered stroke. Major bleeding and stroke/transient ischaemic attack events within 2 years (annual event rates, 290 patients/year) were less frequent than expected from CHADS2 (2.4% vs 9.6%), CHA2DS2-VASc (2.4% vs 8.3%) and HAS-BLED (3.1% vs 6.6%) risk scores (p<0.001, p=0.003, p=0.047, respectively). CONCLUSIONS: LAA closure with an occlusion device in patients contraindicated for oral anticoagulants is a therapeutic option associated with fewer thromboembolic and haemorrhagic events than expected from risk scores, particularly in the second year postimplantation

    Holographic chiral magnetic spiral

    Full text link
    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential.Comment: 24 pages, 15 figure

    On the origin of the Boson peak in globular proteins

    Full text link
    We study the Boson Peak phenomenology experimentally observed in globular proteins by means of elastic network models. These models are suitable for an analytic treatment in the framework of Euclidean Random Matrix theory, whose predictions can be numerically tested on real proteins structures. We find that the emergence of the Boson Peak is strictly related to an intrinsic mechanical instability of the protein, in close similarity to what is thought to happen in glasses. The biological implications of this conclusion are also discussed by focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems, Molveno (2006
    corecore