389 research outputs found
Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications
© 2019 Elsevier B.V. This study presents the successful fabrication of a novel defect-free outer-selective hollow fiber (OSHF) thin-film composite (TFC) membrane for forward osmosis (FO) applications. Thin and porous FO membrane substrates made of polyether sulfone (PES) with a dense and smooth outer surface were initially fabricated at different air-gap distances. A modified vacuum-assisted interfacial polymerization (VAIP) technique was then successfully utilised for coating polyamide (PA) layer on the hollow fiber (HF) membrane substrate to prepare OSHF TFC membranes. Experimental results showed that the molecular weight cut-off (MWCO) of the surface of the membrane substrate should be less than 88 kDa with smooth surface roughness to obtain a defect-free PA layer via VAIP. The FO test results showed that the newly developed OSHF TFC membranes achieved water flux of 30.2 L m−2 h−1 and a specific reverse solute flux of 0.13 g L−1 using 1 M NaCl and DI water as draw and feed solution, respectively. This is a significant improvement on commercial FO membranes. Moreover, this OSHF TFC FO membrane demonstrated higher fouling resistance and better cleaning efficiency against alginate-silica fouling. This membrane also has a strong potential for scale-up for use in larger applications. It also has strong promise for various FO applications such as osmotic membrane bioreactor (OMBR) and fertilizer-drawn OMBR processes
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Recommended from our members
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field
HEATR2 Plays a Conserved Role in Assembly of the Ciliary Motile Apparatus
Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme
Burnout and work-related stressors in gastroenterology: a protocol for a multinational observational study in the ASEAN region.
BACKGROUND: Clinician burnout is an important occupational hazard that may be exacerbated by the novel COVID-19 pandemic. Within Southeast Asia, burnout in gastroenterology is understudied. The primary objective of this study is to estimate the prevalence of burnout symptoms within gastroenterology, in member states of the Associations of Southeast Asian Nations (ASEAN), during and after the COVID-19 pandemic. The secondary objective is to identify work-related stressors that contribute to burnout in ASEAN gastroenterologists. METHODS AND ANALYSIS: This is an observational study that will use anonymised online surveys to estimate the prevalence of burnout symptoms at two time points: during the COVID-19 pandemic in 2020 and in 2022 (assumed to be after the pandemic). Gastroenterologists from Singapore, Malaysia, Thailand, Indonesia, Philippines and Brunei will be invited to participate in the online survey through their national gastroenterology and endoscopy societies. Burnout will be assessed using the Maslach Burnout Inventory-Human Services Survey tool. Supplementary questions will collect demographic and qualitative data. Associations between demographic characteristics and burnout will be tested by multiple regression. RESULTS: The prevalence of burnout symptoms in gastroenterology during the COVID-19 pandemic, and the baseline prevalence after COVID-19, will be established in the above-mentioned countries. Work-related stressors commonly associated with burnout will be identified, allowing the introduction of preventative measures to reduce burnout in the future. ETHICS AND DISSEMINATION: Ethical approval was granted by the Singhealth Centralised Institutional Review Board (2020/2709). Results will be submitted for publication
Autoregulation of the Drosophila Noncoding roX1 RNA Gene
Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1+ roX2+) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell
Dynamic phenotypic heterogeneity and the evolution of multiple RNA subtypes in Hepatocellular Carcinoma: the PLANET study
Intra-tumor heterogeneity (ITH) is a key challenge in cancer treatment, but previous studies have focused mainly on the genomic alterations without exploring phenotypic (transcriptomic and immune) heterogeneity. Using one of the largest prospective surgical cohorts for Hepatocellular Carcinoma (HCC) with multi-region sampling, we sequenced whole genomes and paired transcriptomes from 67 HCC patients (331 samples). We found that while genomic ITH was rather constant across TNM stages, phenotypic ITH had a very different trajectory and quickly diversified in stage II patients. Most strikingly, 30% patients were found to contain more than one transcriptomic subtype within a single tumor. Such phenotypic ITH was found to be much more informative in predicting patient survival than genomic ITH and explains the poor efficacy of single-target systemic therapies in HCC. Taken together, we not only revealed an unprecedentedly dynamic landscape of phenotypic heterogeneity in HCC, but also highlighted the importance of studying phenotypic evolution across cancer types
Recommended from our members
The impact of the coronavirus disease 2019 pandemic on gastroenterologists in Southeast Asia: A mixed-methods study.
Funder: National University of Singapore; Id: http://dx.doi.org/10.13039/501100001352Funder: University of Cambridge; Id: http://dx.doi.org/10.13039/501100000735Funder: JGH FoundationBACKGROUND AND AIM: The coronavirus disease 2019 pandemic has impacted gastroenterology practices worldwide; however, its protracted effects within Southeast Asia were unknown. The primary aim of the study was to determine the impact of the pandemic on clinical demands including burnout among gastroenterologists within the region. The secondary aim was to identify risk factors for burnout and determine regional stressors. METHODS: This was a mixed-methods study. Gastroenterologists were surveyed electronically between September 1 and December 7, 2020, via gastroenterology and endoscopy societies of Brunei, Indonesia, Malaysia, Philippines, Singapore, and Thailand. Quantitative and qualitative data were collected. The 22-item Maslach Burnout Inventory-Human Services Survey (MBI-HSS) was used to detect burnout. Quantitative data were non-parametric; non-parametric methods were used for statistical comparisons. Logistic regression was used to determine risk factors for burnout. Content analysis method was used to analyze qualitative data. Ethical approval was obtained. RESULTS: A total of 73.0% reported that they were still significantly affected by the pandemic. Of these, 40.5% reported increased workload and 59.5% decreased workload. Statistically significant differences in weekly working hours, endoscopy, and inpatient volumes were present. No differences were observed in outpatient volumes, likely because of telemedicine. Burnout was common; however, 50.1% of gastroenterologists were unaware of or did not have access to mental health support. This, as well as depression, being a trainee, and public sector work, increased burnout risk significantly. CONCLUSION: The effects of the pandemic are multifaceted, and burnout is common among Southeast Asian gastroenterologists. Safeguards for mental health are suboptimal, and improvements are urgently needed
Transcriptional Priming of Salmonella Pathogenicity Island-2 Precedes Cellular Invasion
Invasive salmonellosis caused by Salmonella enterica involves an enteric stage of infection where the bacteria colonize mucosal epithelial cells, followed by systemic infection with intracellular replication in immune cells. The type III secretion system encoded in Salmonella Pathogenicity Island (SPI)-2 is essential for intracellular replication and the regulators governing high-level expression of SPI-2 genes within the macrophage phagosome and in inducing media thought to mimic this environment have been well characterized. However, low-level expression of SPI-2 genes is detectable in media thought to mimic the extracellular environment suggesting that additional regulatory pathways are involved in SPI-2 gene expression prior to cellular invasion. The regulators involved in this activity are not known and the extracellular transcriptional activity of the entire SPI-2 island in vivo has not been studied. We show that low-level, SsrB-independent promoter activity for the ssrA-ssrB two-component regulatory system and the ssaG structural operon encoded in SPI-2 is dependent on transcriptional input by OmpR and Fis under non-inducing conditions. Monitoring the activity of all SPI-2 promoters in real-time following oral infection of mice revealed invasion-independent transcriptional activity of the SPI2 T3SS in the lumen of the gut, which we suggest is a priming activity with functional relevance for the subsequent intracellular host-pathogen interaction
Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution
APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast DCIS, and in pre-invasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx pre-invasive to invasive NSCLC lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models, revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in pre-invasive disease, providing fuel for selection early in cancer evolution
- …
