33,050 research outputs found

    Optimal distillation of a GHZ state

    Get PDF
    We present the optimal local protocol to distill a Greenberger-Horne-Zeilinger (GHZ) state from a single copy of any pure state of three qubits.Comment: RevTex, 4 pages, 2 figures. Published version, some references adde

    The diamagnetism above the superconducting transition in underdoped La(1.9)Sr(0.1)CuO(4) revisited: Chemical disorder or phase incoherent superconductivity?

    Full text link
    The interplay between superconducting fluctuations and inhomogeneities presents a renewed interest due to recent works supporting an anomalous [beyond the conventional Gaussian-Ginzburg-Landau (GGL) scenario] diamagnetism above Tc in underdoped cuprates. This conclusion, mainly based in the observation of new anomalies in the low-field isothermal magnetization curves, is in contradiction with our earlier results in the underdoped La(1.9)Sr(0.1)CuO(4) [Phys. Rev. Lett. 84, 3157 (2000)]. These seemingly intrinsic anomalies are being presented in various influential works as a 'thermodynamic evidence' for phase incoherent superconductivity in the pseudogap regime, this last being at present a central and debated issue of the cuprate superconductors' physics. Here we have extended our magnetization measurements in La(1.9)Sr(0.1)CuO(4) to two samples with different chemical disorder, in one of them close to the one associated with the random distribution of Sr ions. For this sample, the corresponding Tc-distribution may be approximated as symmetric around the average Tc, while in the most disordered sample is strongly asymmetric. The comparison between the magnetization measured in both samples provides a crucial check of the chemical disorder origin of the observed diamagnetism anomalies, which are similar to those claimed as due to phase fluctuations by other authors. This conclusion applies also to the sample affected only by the intrinsic-like chemical disorder, providing then a further check that the intrinsic diamagnetism above the superconducting transition of underdoped cuprates is not affected by the opening of a pseudogap in the normal state. It is also shown here that once these disorder effects are overcome, the remaining precursor diamagnetism may be accounted at a quantitative level in terms of the GGL approach under a total energy cutoff.Comment: 13 pages, 7 figures. Minor corrections include

    Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order 4\partial^4

    Get PDF
    On the example of the three-dimensional Ising model, we show that nonperturbative renormalization group equations allow one to obtain very accurate critical exponents. Implementing the order 4\partial^4 of the derivative expansion leads to ν=0.632\nu=0.632 and to an anomalous dimension η=0.033\eta=0.033 which is significantly improved compared with lower orders calculations.Comment: 4 pages, 3 figure

    Perfect Sampling with Unitary Tensor Networks

    Get PDF
    Tensor network states are powerful variational ans\"atze for many-body ground states of quantum lattice models. The use of Monte Carlo sampling techniques in tensor network approaches significantly reduces the cost of tensor contractions, potentially leading to a substantial increase in computational efficiency. Previous proposals are based on a Markov chain Monte Carlo scheme generated by locally updating configurations and, as such, must deal with equilibration and autocorrelation times, which result in a reduction of efficiency. Here we propose a perfect sampling scheme, with vanishing equilibration and autocorrelation times, for unitary tensor networks -- namely tensor networks based on efficiently contractible, unitary quantum circuits, such as unitary versions of the matrix product state (MPS) and tree tensor network (TTN), and the multi-scale entanglement renormalization ansatz (MERA). Configurations are directly sampled according to their probabilities in the wavefunction, without resorting to a Markov chain process. We also describe a partial sampling scheme that can result in a dramatic (basis-dependent) reduction of sampling error.Comment: 11 pages, 9 figures, renamed partial sampling to incomplete sampling for clarity, extra references, plus a variety of minor change

    Aharonov-Bohm cages in the GaAlAs/GaAs system

    Full text link
    Aharonov-Bohm oscillations have been observed in a lattice formed by a two dimensional rhombus tiling. This observation is in good agreement with a recent theoretical calculation of the energy spectrum of this so-called T3 lattice. We have investigated the low temperature magnetotransport of the T3 lattice realized in the GaAlAs/GaAs system. Using an additional electrostatic gate, we have studied the influence of the channel number on the oscillations amplitude. Finally, the role of the disorder on the strength of the localization is theoretically discussed.Comment: 6 pages, 11 EPS figure

    Numerical study of the hard-core Bose-Hubbard Model on an Infinite Square Lattice

    Get PDF
    We present a study of the hard-core Bose-Hubbard model at zero temperature on an infinite square lattice using the infinite Projected Entangled Pair State algorithm [Jordan et al., Phys. Rev. Lett. 101, 250602 (2008)]. Throughout the whole phase diagram our values for the ground state energy, particle density and condensate fraction accurately reproduce those previously obtained by other methods. We also explore ground state entanglement, compute two-point correlators and conduct a fidelity-based analysis of the phase diagram. Furthermore, for illustrative purposes we simulate the response of the system when a perturbation is suddenly added to the Hamiltonian.Comment: 8 pages, 6 figure

    Detection of deuterium Balmer lines in the Orion Nebula

    Get PDF
    The detection and first identification of the deuterium Balmer emission lines, D-alpha and D-beta, in the core of the Orion Nebula is reported. Observations were conducted at the 3.6m Canada-France-Hawaii Telescope, using the Echelle spectrograph Gecko. These lines are very narrow and have identical 11 km/s velocity shifts with respect to H-alpha and H-beta. They are probably excited by UV continuum fluorescence from the Lyman (DI) lines and arise from the interface between the HII region and the molecular cloud.Comment: 4 pages, latex, 1 figure, 1 table, accepted for publication in Astronomy & Astrophysics, Letter
    corecore