1,553 research outputs found

    The Latent Structure of Dictionaries

    No full text
    How many words (and which ones) are sufficient to define all other words? When dictionaries are analyzed as directed graphs with links from defining words to defined words, they reveal a latent structure. Recursively removing all words that are reachable by definition but that do not define any further words reduces the dictionary to a Kernel of about 10%. This is still not the smallest number of words that can define all the rest. About 75% of the Kernel turns out to be its Core, a Strongly Connected Subset of words with a definitional path to and from any pair of its words and no word’s definition depending on a word outside the set. But the Core cannot define all the rest of the dictionary. The 25% of the Kernel surrounding the Core consists of small strongly connected subsets of words: the Satellites. The size of the smallest set of words that can define all the rest (the graph’s Minimum Feedback Vertex Set or MinSet) is about 1% of the dictionary, 15% of the Kernel, and half-Core, half-Satellite. But every dictionary has a huge number of MinSets. The Core words are learned earlier, more frequent, and less concrete than the Satellites, which in turn are learned earlier and more frequent but more concrete than the rest of the Dictionary. In principle, only one MinSet’s words would need to be grounded through the sensorimotor capacity to recognize and categorize their referents. In a dual-code sensorimotor-symbolic model of the mental lexicon, the symbolic code could do all the rest via re-combinatory definition

    Monitoring of a Large Cracked Concrete Sample with Non-Linear Mixing of Ultrasonic Coda Waves

    Get PDF
    International audienceA high precision can be achieved with ultrasonic coda waves to monitor the mechanical properties of concrete material (~10-5 in relative). This high sensitivity can be used to detect damage initiation and to closely follow concrete mechanical properties evolution with time. This advantage is counterbalance by the influence of environmental conditions making reproducibility of any experiment in concrete a challenging issue especially when in situ measurements are performed. Indeed thermal and water gradients present in the thickness of the structures (several decimetres) cannot be controlled and must be compensated. In this paper a protocol to remove environmental bias is proposed. Furthermore, to follow the apparition of a tensile crack in a metric size structure, non-linear mixing of coda wave via frequency-swept pump waves is tested. It is shown that, when the crack is closed (by pre-stressing cables), it is still possible to detect its presence. The non-linearity of the cracked zone remains at a high level, comparable to the case when the crack was open

    Neutropenia as an adverse event following vaccination : results from randomized clinical trials in healthy adults and systematic review

    Get PDF
    Background : In the context of early vaccine trials aimed at evaluating the safety profile of novel vaccines, abnormal haematological values, such as neutropenia, are often reported. It is therefore important to evaluate how these trials should be planned not to miss potentially important safety signals, but also to understand the implications and the clinical relevance. Methodology : We report and discuss the results from five clinical trials (two with a new Shigella vaccine in the early stage of clinical development and three with licensed vaccines) where the absolute neutrophil counts (ANC) were evaluated before and after vaccination. Additionally, we have performed a systematic review of the literature on cases of neutropenia reported during vaccine trials to discuss our results in a more general context. Principal Findings : Both in our clinical trials and in the literature review, several cases of neutropenia have been reported, in the first two weeks after vaccination. However, neutropenia was generally transient and had a benign clinical outcome, after vaccination with either multiple novel candidates or well-known licensed vaccines. Additionally, the vaccine recipients with neutropenia frequently had lower baseline ANC than non-neutropenic vaccinees. In many instances neutropenia occurred in subjects of African descent, known to have lower ANC compared to western populations. Conclusions : It is important to include ANC and other haematological tests in early vaccine trials to identify potential safety signals. Post-vaccination neutropenia is not uncommon, generally transient and clinically benign, but many vaccine trials do not have a sampling schedule that allows its detection. Given ethnic variability in the level of circulating neutrophils, normal ranges taking into account ethnicity should be used for determination of trial inclusion/exclusion criteria and classification of neutropenia related adverse events

    : Tubulin dimer binding proteins

    Get PDF
    International audienceMicrotubules play an essential role in eukaryotic cells, where they perform a wide variety of functions. In this paper, we describe the characterization of proteins associated to tubulin dimer in its native form, using affinity chromatography and mass spectrometry. We used an immunoaffinity column with coupled-monoclonal antibody directed against the alpha-tubulin C-terminus. Tubulin was first loaded onto the column, then interphase and mitotic cell lysates were chromatographed. Tubulin-binding proteins were eluted using a peptide mimicking the alpha-tubulin C-terminus. Elution fractions were analyzed by SDS-PAGE, and a total of 14 proteins were identified with high confidence by mass spectrometry. These proteins could be grouped in four classes: known tubulin-binding proteins, one microtubule-associated protein, heat shock proteins, and proteins that were not shown previously to bind tubulin dimer or microtubules

    Closed Crack Detection in Concrete with Coda Wave Non-Linear Modulation

    Get PDF
    International audienceConcrete is a widely used construction material by virtue of its cost and mechanical properties. Due to its low tensile strength however, concrete is very sensitive to crack formation. Cracks in concrete are responsible for significant inspection, maintenance and repair costs. In order to optimize structural health management, Non-Destructive Testing (NDT) has been extensively studied. Among all NDT techniques, ultrasonic methods are considered advantageous by providing information on mechanical properties in areas not directly accessible from the surface. Recent studies have led to developing nonlinear ultrasonic methods to increase the sensitivity to damage making possible the detection of large cracks/notches and the monitoring of crack evolution. However, the detection of small cracks in concrete remains a great challenge for NDT techniques. In this study, an ultrasonic method, based on nonlinear acoustic mixing of coda waves by lower-frequency swept pump waves, providing for an efficient global detection of small cracks in concrete is presented. By simultaneous comparison, for uncracked and cracked mortars, of ultrasonic velocity variations and decorrelation coefficient between the unperturbed and the perturbed signals for different pump amplitude, the method allows to accurately detect very small cracks with widths of around 20 mm correlated with velocity variations of approximately 0.01%. This method is reproducible and able to provide a simple means for differentiating damaged and sound concrete. Attention must be paid however to the material evolution during the time span of both a single experiment and the entire experimental campaign as a consequence of the presumed high sensitivity of the observables. Several applications of this technique could be developed in the field of civil engineering, although the power of the pump source would constitute a limitation. For example, the detection of small cracks causing leakage could be performed without any need for percolating fluid

    Comparison of durability indicators obtained by Non Destructive Testing methods to monitor the durability of concrete structures

    No full text
    International audienceThis paper deals with the use of non destructive testing methods (NDT) to assess indicators of concrete durability and mechanical properties of reinforced concrete structures. On site, NDT methods based on electromagnetic or ultrasonic wave propagation (such as radar, impact echo, ultrasonic transmission deviceÉ) are used because they are more or less sensitive to water content and mechanical properties depending on the method. It has been shown, in a former project [1, 2], that the NDT results called Òobservablesî are linked to mechanical and durability indicators (YoungÕs modulus, compressive strength, porosity and saturation degree). Meanwhile, the relationship between observables and indicators depends on the concrete mix design. A calibration protocol is then proposed to get this relationship for the right mix of the reinforced structure studied by using a minimal number of cores. The cores are non-destructively characterised in laboratory or used to determined reference indicators by standardised destructive methods. The aims of this paper are first to present the ND calibration protocol on cores and then to validate this proposed calibration protocol. To achieve this goal, some NDT results obtained on site and on the corresponding core are compared and durability indicators deduced from NDT calibration are compared with reference durability indicators

    Lattice strain and tilt mapping in stressed Ge microstructures using X-ray Laue micro-diffraction and rainbow-filtering

    Full text link
    Micro-Laue diffraction and simultaneous rainbow-filtered micro-diffraction were used to measure accurately the full strain tensor and the lattice orientation distribution at the sub-micron scale in highly strained, suspended Ge micro-devices. A numerical approach to obtain the full strain tensor from the deviatoric strain measurement alone is also demonstrated and used for faster full strain mapping. We performed the measurements in a series of micro-devices under either uniaxial or biaxial stress and found an excellent agreement with numerical simulations. This shows the superior potential of Laue micro-diffraction for the investigation of highly strained micro-devices.Comment: 28 pages, 10 figure

    Mid Holocene vegetation reconstruction from Vanevan peat (south-eastern shore of Lake Sevan, Armenia)

    Get PDF
    International audienceA sediment core has been retrieved from Vanevan peat (south-eastern shore of Lake Sevan, Armenia), which is today disconnected from Lake Sevan thanks to an artificial shallowing of the lake. Based on 5 radiocarbon dates, Vanevan record covers the Mid Holocene (from ca. 7800 to ca. 5100 cal. BP). The Late Holocene is today absent in the peat stratigraphy due to modern peat exploitation by surface mining. This study focuses on a multi-proxy approach including pollen, charcoals, and pollen-inferred climate reconstruction. An open-land, steppic vegetation is recorded up to ca. 7700 cal. BP, followed by a more forested landscape during the Mid Holocene (up to ca. 5700 cal. BP), and ending again with an open-land vegetation (to the end of record, 5100 cal. BP). This vegetation dynamics responds to general climate changes documented in the Near East. Whether human activities are documented since ca. 7500 cal. BP (Late Neolithic) in Vanevan, they remain marginal and probably did not affect the area. Early Holocene dry climate, which caused the steppic environment to be widespread through the Near East, is strongly related to low late spring precipitation (PMay–Jun = 180 mm). Mid Holocene forested landscape and increasing lake-level seem related to late spring precipitation (+28%), which is the main change in estimated climate parameters. This has to be linked with reinforcement of the Westerlies and less active Siberian High, which are inversely involved in the following, dry phase starting at ca. 5700 cal. B
    corecore