3,023 research outputs found
Surface Plasmon Excitation of Second Harmonic light: Emission and Absorption
We aim to clarify the role that absorption plays in nonlinear optical
processes in a variety of metallic nanostructures and show how it relates to
emission and conversion efficiency. We define a figure of merit that
establishes the structure's ability to either favor or impede second harmonic
generation. Our findings suggest that, despite the best efforts embarked upon
to enhance local fields and light coupling via plasmon excitation, nearly
always the absorbed harmonic energy far surpasses the harmonic energy emitted
in the far field. Qualitative and quantitative understanding of absorption
processes is crucial in the evaluation of practical designs of plasmonic
nanostructures for the purpose of frequency mixing
The Queer Stopover: How Queer Travels in the Language Classroom
Over the last decade or so, developments in queer theory and queer perspectives have resulted in changes to the way that identities are viewed. However, the implications for foreign language classrooms are yet to be fully explored. This paper focuses on the challenges involved in introducing queer theory to the foreign language classroom. Specifically, it seeks to respond to the question How does queer travel to the French, Italian and Japanese classrooms in an Australian university? In doing so, it considers the challenges which emerge due to the structures of the languages, the sociocultural context and the teaching materials used in the classroom. It is written by experienced teachers as they considered, and in some cases trialled, how to integrate queer perspectives into their teaching. The challenges addressed here are not exhaustive, but represent those the authors consider as the most salient at the initial steps of the journe
Hyperbolic Balance Laws with a Non Local Source
This paper is devoted to hyperbolic systems of balance laws with non local
source terms. The existence, uniqueness and Lipschitz dependence proved here
comprise previous results in the literature and can be applied to physical
models, such as Euler system for a radiating gas and Rosenau regularization of
the Chapman-Enskog expansion.Comment: 26 page
A Dynamical Model of Harmonic Generation in Centrosymmetric Semiconductors
We study second and third harmonic generation in centrosymmetric
semiconductors at visible and UV wavelengths in bulk and cavity environments.
Second harmonic generation is due to a combination of symmetry breaking, the
magnetic portion of the Lorentz force, and quadrupolar contributions that
impart peculiar features to the angular dependence of the generated signals, in
analogy to what occurs in metals. The material is assumed to have a non-zero,
third order nonlinearity that gives rise to most of the third harmonic signal.
Using the parameters of bulk Silicon we predict that cavity environments can
significantly modify second harmonic generation (390nm) with dramatic
improvements for third harmonic generation (266nm). This occurs despite the
fact that the harmonics may be tuned to a wavelength range where the dielectric
function of the material is negative: a phase locking mechanism binds the pump
to the generated signals and inhibits their absorption. These results point the
way to novel uses and flexibility of materials like Silicon as nonlinear media
in the visible and UV ranges
Resonant, broadband and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths
Using a hydrodynamic approach we examine bulk- and surface-induced second and
third harmonic generation from semiconductor nanowire gratings having a
resonant nonlinearity in the absorption region. We demonstrate resonant,
broadband and highly efficient optical frequency conversion: contrary to
conventional wisdom, we show that harmonic generation can take full advantage
of resonant nonlinearities in a spectral range where nonlinear optical
coefficients are boosted well beyond what is achievable in the transparent,
long-wavelength, non-resonant regime. Using femtosecond pulses with
approximately 500 MW/cm2 peak power density, we predict third harmonic
conversion efficiencies of approximately 1% in a silicon nanowire array, at
nearly any desired UV or visible wavelength, including the range of negative
dielectric constant. We also predict surface second harmonic conversion
efficiencies of order 0.01%, depending on the electronic effective mass,
bistable behavior of the signals as a result of a reshaped resonance, and the
onset fifth order nonlinear effects. These remarkable findings, arising from
the combined effects of nonlinear resonance dispersion, field localization, and
phase-locking, could significantly extend the operational spectral bandwidth of
silicon photonics, and strongly suggest that neither linear absorption nor skin
depth should be motivating factors to exclude either semiconductors or metals
from the list of useful or practical nonlinear materials in any spectral range.Comment: 12 pages, 4 figure
- …
