14 research outputs found

    Clinical and Imaging Characteristics of Arteriopathy Subtypes in Children with Arterial Ischemic Stroke: Results of the VIPS Study.

    Get PDF
    Background and purposeChildhood arteriopathies are rare but heterogenous, and difficult to diagnose and classify, especially by nonexperts. We quantified clinical and imaging characteristics associated with childhood arteriopathy subtypes to facilitate their diagnosis and classification in research and clinical settings.Materials and methodsThe Vascular Effects of Infection in Pediatric Stroke (VIPS) study prospectively enrolled 355 children with arterial ischemic stroke (2010-2014). A central team of experts reviewed all data to diagnose childhood arteriopathy and classify subtypes, including arterial dissection and focal cerebral arteriopathy-inflammatory type, which includes transient cerebral arteriopathy, Moyamoya disease, and diffuse/multifocal vasculitis. Only children whose stroke etiology could be conclusively diagnosed were included in these analyses. We constructed logistic regression models to identify characteristics associated with each arteriopathy subtype.ResultsAmong 127 children with definite arteriopathy, the arteriopathy subtype could not be classified in 18 (14%). Moyamoya disease (n = 34) occurred mostly in children younger than 8 years of age; focal cerebral arteriopathy-inflammatory type (n = 25), in children 8-15 years of age; and dissection (n = 26), at all ages. Vertigo at stroke presentation was common in dissection. Dissection affected the cervical arteries, while Moyamoya disease involved the supraclinoid internal carotid arteries. A banded appearance of the M1 segment of the middle cerebral artery was pathognomonic of focal cerebral arteriopathy-inflammatory type but was present in <25% of patients with focal cerebral arteriopathy-inflammatory type; a small lenticulostriate distribution infarct was a more common predictor of focal cerebral arteriopathy-inflammatory type, present in 76%. It remained difficult to distinguish focal cerebral arteriopathy-inflammatory type from intracranial dissection of the anterior circulation. We observed only secondary forms of diffuse/multifocal vasculitis, mostly due to meningitis.ConclusionsChildhood arteriopathy subtypes have some typical features that aid diagnosis. Better imaging methods, including vessel wall imaging, are needed for improved classification of focal cerebral arteriopathy of childhood

    Inflammatory Biomarkers in Childhood Arterial Ischemic Stroke: Correlates of Stroke Cause and Recurrence.

    Get PDF
    Background and purposeAmong children with arterial ischemic stroke (AIS), those with arteriopathy have the highest recurrence risk. We hypothesized that arteriopathy progression is an inflammatory process and that inflammatory biomarkers would predict recurrent AIS.MethodsIn an international study of childhood AIS, we selected cases classified into 1 of the 3 most common childhood AIS causes: definite arteriopathic (n=103), cardioembolic (n=55), or idiopathic (n=78). We measured serum concentrations of high-sensitivity C-reactive protein, serum amyloid A, myeloperoxidase, and tumor necrosis factor-α. We used linear regression to compare analyte concentrations across the subtypes and Cox proportional hazards models to determine predictors of recurrent AIS.ResultsMedian age at index stroke was 8.2 years (interquartile range, 3.6-14.3); serum samples were collected at median 5.5 days post stroke (interquartile range, 3-10 days). In adjusted models (including age, infarct volume, and time to sample collection) with idiopathic as the reference, the cardioembolic (but not arteriopathic) group had higher concentrations of high-sensitivity C-reactive protein and myeloperoxidase, whereas both cardioembolic and arteriopathic groups had higher serum amyloid A. In the arteriopathic (but not cardioembolic) group, higher high-sensitivity C-reactive protein and serum amyloid A predicted recurrent AIS. Children with progressive arteriopathies on follow-up imaging had higher recurrence rates, and a trend toward higher high-sensitivity C-reactive protein and serum amyloid A, compared with children with stable or improved arteriopathies.ConclusionsAmong children with AIS, specific inflammatory biomarkers correlate with cause and-in the arteriopathy group-risk of stroke recurrence. Interventions targeting inflammation should be considered for pediatric secondary stroke prevention trials

    Imaging Predictors of Neurologic Outcome After Pediatric Arterial Ischemic Stroke

    No full text
    BACKGROUND AND PURPOSE: To assess whether initial imaging characteristics independently predict 1-year neurological outcomes in childhood arterial ischemic stroke patients. METHODS: We used prospectively collected demographic and clinical data, imaging data, and 1-year outcomes from the VIPS study (Vascular Effects of Infection in Pediatric Stroke). In 288 patients with first-time stroke, we measured infarct volume and location on the acute magnetic resonance imaging studies and hemorrhagic transformation on brain imaging studies during the acute presentation. Neurological outcome was assessed with the Pediatric Stroke Outcome Measure. We used univariate and multivariable ordinal logistic regression models to test the association between imaging characteristics and outcome. RESULTS: Univariate analysis demonstrated that infarcts involving uncinate fasciculus, angular gyrus, insular cortex, or that extended from cortex to the subcortical nuclei were significantly associated with poorer outcomes with odds ratios ranging from 1.95 to 3.95. All locations except the insular cortex remained significant predictors of poor outcome on multivariable analysis. When infarct volume was added to the model, the locations did not remain significant. Larger infarct volumes and younger age at stroke onset were significantly associated with poorer outcome, but the strength of the relationships was weak. Hemorrhagic transformation did not predict outcome. CONCLUSIONS: In the largest pediatric arterial ischemic stroke cohort collected to date, we showed that larger infarct volume and younger age at stroke were associated with poorer outcomes. We made the novel observation that the strength of these associations was modest and limits the ability to use these characteristics to predict outcome in children. Infarcts affecting specific locations were significantly associated with poorer outcomes in univariate and multivariable analyses but lost significance when adjusted for infarct volume. Our findings suggest that infarcts that disrupt critical networks have a disproportionate impact upon outcome after childhood arterial ischemic stroke
    corecore