931 research outputs found

    Bounds on 4D Conformal and Superconformal Field Theories

    Get PDF
    We derive general bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. In any CFT containing a scalar primary phi of dimension d we show that crossing symmetry of implies a completely general lower bound on the central charge c >= f_c(d). Similarly, in CFTs containing a complex scalar charged under global symmetries, we bound a combination of symmetry current two-point function coefficients tau^{IJ} and flavor charges. We extend these bounds to N=1 superconformal theories by deriving the superconformal block expansions for four-point functions of a chiral superfield Phi and its conjugate. In this case we derive bounds on the OPE coefficients of scalar operators appearing in the Phi x Phi* OPE, and show that there is an upper bound on the dimension of Phi* Phi when dim(Phi) is close to 1. We also present even more stringent bounds on c and tau^{IJ}. In supersymmetric gauge theories believed to flow to superconformal fixed points one can use anomaly matching to explicitly check whether these bounds are satisfied.Comment: 47 pages, 9 figures; V2: small corrections and clarification

    Bounds on SCFTs from Conformal Perturbation Theory

    Full text link
    The operator product expansion (OPE) in 4d (super)conformal field theory is of broad interest, for both formal and phenomenological applications. In this paper, we use conformal perturbation theory to study the OPE of nearly-free fields coupled to SCFTs. Under fairly general assumptions, we show that the OPE of a chiral operator of dimension Δ=1+ϵ\Delta = 1+\epsilon with its complex conjugate always contains an operator of dimension less than 2Δ2 \Delta. Our bounds apply to Banks-Zaks fixed points and their generalizations, as we illustrate using several examples.Comment: 36 pages; v2: typos fixed, minor change

    Exactly Marginal Deformations and Global Symmetries

    Full text link
    We study the problem of finding exactly marginal deformations of N=1 superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the "conformal manifold," is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure

    Superconformal Flavor Simplified

    Get PDF
    A simple explanation of the flavor hierarchies can arise if matter fields interact with a conformal sector and different generations have different anomalous dimensions under the CFT. However, in the original study by Nelson and Strassler many supersymmetric models of this type were considered to be 'incalculable' because the R-charges were not sufficiently constrained by the superpotential. We point out that nearly all such models are calculable with the use of a-maximization. Utilizing this, we construct the simplest vector-like flavor models and discuss their viability. A significant constraint on these models comes from requiring that the visible gauge couplings remain perturbative throughout the conformal window needed to generate the hierarchies. However, we find that there is a small class of simple flavor models that can evade this bound.Comment: 43 pages, 1 figure; V3: small corrections and clarifications, references adde

    Incidence and diversity of the fungal genera Aspergillus and Penicillium in Portuguese almonds and chestnuts

    Get PDF
    Almonds (Prunus dulcis (Miller) D.A. Webb) and European (sweet) chestnuts (Castanea sativa Miller) are of great economic and social impact in Mediterranean countries, and in some areas they constitute the main income of rural populations. Despite all efforts to control fungal contamination, toxigenic fungi are ubiquitous in nature and occur regularly in worldwide food supplies, and these nuts are no exception. This work aimed to provide knowledge on the general mycobiota of Portuguese almonds and chestnuts, and its evolution from field to the end of storage. For this matter, 45 field chestnut samples and 36 almond samples (30 field samples and six storage samples) were collected in Trás-os-Montes, Portugal. All fungi belonging to genus Aspergillus were isolated and identified to the section level. Fungi representative of other genera were identified to the genus level. In the field, chestnuts were mainly contaminated with the genera Fusarium, Cladosporium, Alternaria and Penicillium, and the genus Aspergillus was only rarely found, whereas almonds were more contaminated with Aspergillus. In almonds, Aspergillus incidence increased significantly from field to the end of storage, but diversity decreased, with potentially toxigenic isolates belonging to sections Flavi and Nigri becoming more significant and widespread throughout storage. These fungi were determined to be moderately associated, which can be indicative of mycotoxin co-contamination problems if adequate storage conditions are not secured.P. Rodrigues was supported by grants SFRH/BD/28332/2006 from Fundacao para a Ciencia e a Tecnologia (FCT), and SFRH/PROTEC/49555/2009 from FCT and Polytechnic Institute of Braganca, Portugal

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte

    Superfund, Hedonics, and the Scales of Environmental Justice

    Get PDF
    Environmental justice (EJ) is prominent in environmental policy, yet EJ research is plagued by debates over methodological procedures. A well-established economic approach, the hedonic price method, can offer guidance on one contentious aspect of EJ research: the choice of the spatial unit of analysis. Environmental managers charged with preventing or remedying inequities grapple with these framing problems. This article reviews the theoretical and empirical literature on unit choice in EJ, as well as research employing hedonic pricing to assess the spatial extent of hazardous waste site impacts. The insights from hedonics are demonstrated in a series of EJ analyses for a national inventory of Superfund sites. First, as evidence of injustice exhibits substantial sensitivity to the choice of spatial unit, hedonics suggests some units conform better to Superfund impacts than others. Second, hedonic estimates for a particular site can inform the design of appropriate tests of environmental inequity for that site. Implications for policymakers and practitioners of EJ analyses are discussed

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes

    Get PDF
    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation

    Toxoplasma Effector MAF1 Mediates Recruitment of Host Mitochondria and Impacts the Host Response

    Get PDF
    Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria. © 2014 Pernas et al
    corecore