88 research outputs found
Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat
Background and Aims
Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality.
Methods
Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray μ-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution.
Results
Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar.
Conclusions
Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose
Genome wide association mapping for arabinoxylan content in a collection of tetraploid wheats
BACKGROUND: Arabinoxylans (AXs) are major components of plant cell walls in bread wheat and are important in bread-making and starch extraction. Furthermore, arabinoxylans are components of soluble dietary fibre that has potential health-promoting effects in human nutrition. Despite their high value for human health, few studies have been carried out on the genetics of AX content in durum wheat. RESULTS: The genetic variability of AX content was investigated in a set of 104 tetraploid wheat genotypes and regions attributable to AX content were identified through a genome wide association study (GWAS). The amount of arabinoxylan, expressed as percentage (w/w) of the dry weight of the kernel, ranged from 1.8% to 5.5% with a mean value of 4.0%. The GWAS revealed a total of 37 significant marker-trait associations (MTA), identifying 19 quantitative trait loci (QTL) associated with AX content. The highest number of MTAs was identified on chromosome 5A (seven), where three QTL regions were associated with AX content, while the lowest number of MTAs was detected on chromosomes 2B and 4B, where only one MTA identified a single locus. Conservation of synteny between SNP marker sequences and the annotated genes and proteins in Brachypodium distachyon, Oryza sativa and Sorghum bicolor allowed the identification of nine QTL coincident with candidate genes. These included a glycosyl hydrolase GH35, which encodes Gal7 and a glucosyltransferase GT31 on chromosome 1A; a cluster of GT1 genes on chromosome 2B that includes TaUGT1 and cisZog1; a glycosyl hydrolase that encodes a CelC gene on chromosome 3A; Ugt12887 and TaUGT1genes on chromosome 5A; a (1,3)-β-D-glucan synthase (Gsl12 gene) and a glucosyl hydrolase (Cel8 gene) on chromosome 7A. CONCLUSIONS: This study identifies significant MTAs for the AX content in the grain of tetraploid wheat genotypes. We propose that these may be used for molecular breeding of durum wheat varieties with higher soluble fibre content.Ilaria Marcotuli, Kelly Houston, Robbie Waugh, Geoffrey B. Fincher, Rachel A. Burton, Antonio Blanco, Agata Gadalet
Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1;5
During plant growth, sodium (Na+) in the soil is transported via the xylem from the root to the shoot. While excess Na+ is toxic to most plants, non-toxic concentrations have been shown to improve crop yields under certain conditions, such as when soil K+ is low. We quantified grain Na+ across a barley genome-wide association study panel grown under non-saline conditions and identified variants of a Class 1 HIGH-AFFINITY-POTASSIUM-TRANSPORTER (HvHKT1;5)-encoding gene responsible for Na+ content variation under these conditions. A leucine to proline substitution at position 189 (L189P) in HvHKT1;5 disturbs its characteristic plasma membrane localisation and disrupts Na+ transport. Under low and moderate soil Na+, genotypes containing HvHKT1:5P189 accumulate high concentrations of Na+ but exhibit no evidence of toxicity. As the frequency of HvHKT1:5P189 increases significantly in cultivated European germplasm, we cautiously speculate that this non-functional variant may enhance yield potential in non-saline environments, possibly by offsetting limitations of low available K+
The use of 3D surface scanning for the measurement and assessment of the human foot
<p>Abstract</p> <p>Background</p> <p>A number of surface scanning systems with the ability to quickly and easily obtain 3D digital representations of the foot are now commercially available. This review aims to present a summary of the reported use of these technologies in footwear development, the design of customised orthotics, and investigations for other ergonomic purposes related to the foot.</p> <p>Methods</p> <p>The PubMed and ScienceDirect databases were searched. Reference lists and experts in the field were also consulted to identify additional articles. Studies in English which had 3D surface scanning of the foot as an integral element of their protocol were included in the review.</p> <p>Results</p> <p>Thirty-eight articles meeting the search criteria were included. Advantages and disadvantages of using 3D surface scanning systems are highlighted. A meta-analysis of studies using scanners to investigate the changes in foot dimensions during varying levels of weight bearing was carried out.</p> <p>Conclusions</p> <p>Modern 3D surface scanning systems can obtain accurate and repeatable digital representations of the foot shape and have been successfully used in medical, ergonomic and footwear development applications. The increasing affordability of these systems presents opportunities for researchers investigating the foot and for manufacturers of foot related apparel and devices, particularly those interested in producing items that are customised to the individual. Suggestions are made for future areas of research and for the standardization of the protocols used to produce foot scans.</p
Comparative Analyses of SUV420H1 Isoforms and SUV420H2 Reveal Differences in Their Cellular Localization and Effects on Myogenic Differentiation
Methylation of histone H4 on lysine 20 plays critical roles in chromatin structure and function via mono- (H4K20me1), di- (H4K20me2), and trimethyl (H4K20me3) derivatives. In previous analyses of histone methylation dynamics in mid-gestation mouse embryos, we documented marked changes in H4K20 methylation during cell differentiation. These changes were particularly robust during myogenesis, both in vivo and in cell culture, where we observed a transition from H4K20me1 to H4K20me3. To assess the significance of this change, we used a gain-of-function strategy involving the lysine methyltransferases SUV420H1 and SUV420H2, which catalyze H4K20me2 and H4K20me3. At the same time, we characterized a second isoform of SUV420H1 (designated SUV420H1_i2) and compared the activity of all three SUV420H proteins with regard to localization and H4K20 methylation.Immunofluorescence revealed that exogenous SUV420H1_i2 was distributed throughout the cell, while a substantial portion of SUV420H1_i1 and SUV420H2 displayed the expected association with constitutive heterochromatin. Moreover, SUV420H1_i2 distribution was unaffected by co-expression of heterochromatin protein-1α, which increased the targeting of SUV420H1_i1 and SUV420H2 to regions of pericentromeric heterochromatin. Consistent with their distributions, SUV420H1_i2 caused an increase in H4K20me3 levels throughout the nucleus, whereas SUV420H1_i1 and SUV420H2 facilitated an increase in pericentric H4K20me3. Striking differences continued when the SUV420H proteins were tested in the C2C12 myogenic model system. Specifically, although SUV420H1_i2 induced precocious appearance of the differentiation marker Myogenin in the presence of mitogens, only SUV420H2 maintained a Myogenin-enriched population over the course of differentiation. Paradoxically, SUV420H1_i1 could not be expressed in C2C12 cells, which suggests it is under post-transcriptional or post-translational control.These data indicate that SUV420H proteins differ substantially in their localization and activity. Importantly, SUV420H2 can induce a transition from H4K20me1 to H4K20me3 in regions of constitutive heterochromatin that is sufficient to enhance myogenic differentiation, suggesting it can act an as epigenetic ‘switch’ in this process
Intraoperative assessment of biliary anatomy for prevention of bile duct injury: a review of current and future patient safety interventions
Background Bile duct injury (BDI) is a dreaded complication of cholecystectomy, often caused by misinterpretation of biliary anatomy. To prevent BDI, techniques have been developed for intraoperative assessment of bile duct anatomy. This article reviews the evidence for the different techniques and discusses their strengths and weaknesses in terms of efficacy, ease, and cost-effectiveness. Method PubMed was searched from January 1980 through December 2009 for articles concerning bile duct visualization techniques for prevention of BDI during laparoscopic cholecystectomy. Results Nine techniques were identified. The critical-view-of-safety approach, indirectly establishing biliary anatomy, is accepted by most guidelines and commentaries as the surgical technique of choice to minimize BDI risk. Intraoperative cholangiography is associated with lower BDI risk (OR 0.67, CI 0.61-0.75). However, it incurs extra costs, prolongs the operative procedure, and may be experienced as cumbersome. An established reliable alternative is laparoscopic ultrasound, but its longer learning curve limits widespread implementation. Easier to perform are cholecystocholangiography and dye cholangiography, but these yield poor-quality images. Light cholangiography, requiring retrograde insertion of an optical fiber into the common bile duct, is too unwieldy for routine use. Experimental techniques are passive infrared cholangiography, hyperspectral cholangiography, and near-infrared fluorescence cholangiography. The latter two are performed noninvasively and provide real-time images. Quantitative data in patients are necessary to further evaluate these techniques. Conclusions The critical-view-of-safety approach should be used during laparoscopic cholecystectomy. Intraoperative cholangiography or laparoscopic ultrasound is recommended to be performed routinely. Hyperspectral cholangiography and near-infrared fluorescence cholangiography are promising novel techniques to prevent BDI and thus increase patient safety
Biomedical informatics and translational medicine
Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams
- …
