13 research outputs found
On the homomorphism order of labeled posets
Partially ordered sets labeled with k labels (k-posets) and their
homomorphisms are examined. We give a representation of directed graphs by
k-posets; this provides a new proof of the universality of the homomorphism
order of k-posets. This universal order is a distributive lattice. We
investigate some other properties, namely the infinite distributivity, the
computation of infinite suprema and infima, and the complexity of certain
decision problems involving the homomorphism order of k-posets. Sublattices are
also examined.Comment: 14 page
