2,440 research outputs found

    Receptor-type Guanylyl Cyclases Confer Thermosensory Responses in C. elegans.

    Get PDF
    Thermosensation is critical for optimal regulation of physiology and behavior. C. elegans acclimates to its cultivation temperature (Tc) and exhibits thermosensitive behaviors at temperatures relative to Tc. These behaviors are mediated primarily by the AFD sensory neurons, which are extraordinarily thermosensitive and respond to thermal fluctuations at temperatures above a Tc-determined threshold. Although cGMP signaling is necessary for thermotransduction, the thermosensors in AFD are unknown. We show that AFD-specific receptor guanylyl cyclases (rGCs) are instructive for thermosensation. In addition to being necessary for thermotransduction, ectopic expression of these rGCs confers highly temperature-dependent responses onto diverse cell types. We find that the temperature response threshold is determined by the rGC and cellular context, and that multiple domains contribute to their thermosensory properties. Identification of thermosensory rGCs in C. elegans provides insight into mechanisms of thermosensation and thermal acclimation and suggests that rGCs may represent a new family of molecular thermosensors.This work was funded in part by the NIH (R01 GM081639 and P01 GM103770 – P.S., T32007292 – V.M.H. and P01NS079419 - T.O.).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.neuron.2016.03.00

    Renormalisation of heavy-light light ray operators

    Full text link
    We calculate the renormalisation of different light ray operators with one light degree of freedom and a static heavy quark. Both 222\to2- and 232\to3-kernels are considered. A comparison with the light-light case suggests that the mixing with three-particle operators is solely governed by the light degrees of freedom. Additionally we show that conformal symmetry is already broken at the level of the one loop counterterms due to the additional UV-renormalisation of a cusp in the two contributing Wilson-lines. This general feature can be used to fix the 222\to2-renormalisation kernels up to a constant. Some examples for applications of our results are given.Comment: 23 pages, 5 figures; v2: changed some wording, added a few references and one appendix concerning some subtleties related to gauge fixing and ghost terms; v3: clarified calculation in section 3.2., added an explicit calculation in section 5.2, corrected a few typos and one figure, added a few comments, results unchanged, except for typesetting matches version to appear in JHE

    Massive rearrangements of cellular MicroRNA signatures are key drivers of hepatocyte dedifferentiation

    Get PDF
    Hepatocytes are dynamic cells that, upon injury, can alternate between nondividing differentiated and dedifferentiated proliferating states in vivo . However, in two‐dimensional cultures, primary human hepatocytes (PHHs) rapidly dedifferentiate, resulting in loss of hepatic functions that significantly limits their usefulness as an in vitro model of liver biology, liver diseases, as well as drug metabolism and toxicity. Thus, understanding the underlying mechanisms and stalling of the dedifferentiation process would be highly beneficial to establish more‐accurate and relevant long‐term in vitro hepatocyte models. Here, we present comprehensive analyses of whole proteome and transcriptome dynamics during the initiation of dedifferentiation during the first 24 hours of culture. We report that early major rearrangements of the noncoding transcriptome, hallmarked by increased expression of small nucleolar RNAs, long noncoding RNAs, microRNAs (miRNAs), and ribosomal genes, precede most changes in coding genes during dedifferentiation of PHHs, and we speculated that these modulations could drive the hepatic dedifferentiation process. To functionally test this hypothesis, we globally inhibited the miRNA machinery using two established chemically distinct compounds, acriflavine and poly‐l ‐lysine. These inhibition experiments resulted in a significantly impaired miRNA response and, most important, in a pronounced reduction in the down‐regulation of hepatic genes with importance for liver function. Thus, we provide strong evidence for the importance of noncoding RNAs, in particular, miRNAs, in hepatic dedifferentiation, which can aid the development of more‐efficient differentiation protocols for stem‐cell‐derived hepatocytes and broaden our understanding of the dynamic properties of hepatocytes with respect to liver regeneration. Conclusion: miRNAs are important drivers of hepatic dedifferentiation, and our results provide valuable information regarding the mechanisms behind liver regeneration and possibilities to inhibit dedifferentiation in vitro

    Search for electromagnetic properties of the neutrinos at the LHC

    Full text link
    Exclusive production of neutrinos via photon-photon fusion provides an excellent opportunity to probe electromagnetic properties of the neutrinos at the LHC. We explore the potential of processes pp-> p gamma gamma p -> p nu anti-nu p and pp -> p gamma gamma p -> p nu anti-nu Z p to probe neutrino-photon and neutrino-two photon couplings. We show that these reactions provide more than seven orders of magnitude improvement in neutrino-two photon couplings compared to LEP limits.Comment: 11 pages, 4 tables, New backgrounds have been adde

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    P-odd and CP-odd Four-Quark Contributions to Neutron EDM

    Full text link
    In a class of beyond-standard-model theories, CP-odd observables, such as the neutron electric dipole moment, receive significant contributions from flavor-neutral P-odd and CP-odd four-quark operators. However, considerable uncertainties exist in the hadronic matrix elements of these operators strongly affecting the experimental constraints on CP-violating parameters in the theories. Here we study their hadronic matrix elements in combined chiral perturbation theory and nucleon models. We first classify the operators in chiral representations and present the leading-order QCD evolutions. We then match the four-quark operators to the corresponding ones in chiral hadronic theory, finding symmetry relations among the matrix elements. Although this makes lattice QCD calculations feasible, we choose to estimate the non-perturbative matching coefficients in simple quark models. We finally compare the results for the neutron electric dipole moment and P-odd and CP-odd pion-nucleon couplings with the previous studies using naive factorization and QCD sum rules. Our study shall provide valuable insights on the present hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the uncertainty of the calculation is adde

    The Hubble Constant

    Get PDF
    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H0H_0 values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200

    Common Selfcare Indications of Pain Medications in Children.

    Get PDF
    Pain has a multifaceted impact on individuals worldwide, affecting their physical functioning, emotional well-being, and quality of life. Children (age < 18 years) have a high prevalence of conditions associated with pain, such as toothache, headache, earache, sore throat, and respiratory tract infections, many of which may be accompanied by fever. Globally, the pharmacologic treatment of pain in pediatric patients is limited largely to nonopioid analgesics, and dosing must account for differences in age, weight, metabolism, and risk of adverse effects. This narrative review summarizes the findings of a literature search on the pediatric indications, dosing approaches, dosing guidelines, and pharmacokinetics of paracetamol and ibuprofen, which are common pain medications available globally for self-care use in children. The review also discusses the risks and benefits associated with these agents. The current roles of paracetamol and ibuprofen in the symptomatic management of coronavirus disease 2019 (COVID-19) infection and in the management of post-COVID-19 immunization symptoms in children are also discussed. Therefore, while a very large amount of data over several decades is available for paracetamol and ibuprofen, an urgent need exists for well-designed studies of these medications for the management of pain and fever in pediatric patients with COVID-19 to ensure optimal relief with minimal toxicity

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Rotation Curves of Spiral Galaxies

    Get PDF
    Rotation curves of spiral galaxies are the major tool for determining the distribution of mass in spiral galaxies. They provide fundamental information for understanding the dynamics, evolution and formation of spiral galaxies. We describe various methods to derive rotation curves, and review the results obtained. We discuss the basic characteristics of observed rotation curves in relation to various galaxy properties, such as Hubble type, structure, activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137, 200
    corecore