59 research outputs found
Unveiling thermal transitions of polymers in subnanometre pores
The thermal transitions of confined polymers are important for the application of polymers in molecular scale devices and advanced nanotechnology. However, thermal transitions of ultrathin polymer assemblies confined in subnanometre spaces are poorly understood. In this study, we show that incorporation of polyethylene glycol (PEG) into nanochannels of porous coordination polymers (PCPs) enabled observation of thermal transitions of the chain assemblies by differential scanning calorimetry. The pore size and surface functionality of PCPs can be tailored to study the transition behaviour of confined polymers. The transition temperature of PEG in PCPs was determined by manipulating the pore size and the pore–polymer interactions. It is also striking that the transition temperature of the confined PEG decreased as the molecular weight of PEG increased
The HITRAN2020 molecular spectroscopic database
The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition
Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station
A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2 x 10(6) events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of primary He, C, and O cosmic rays above similar to 700 GV. We observed that the nitrogen flux Phi(N) can be presented as the sum of its primary component Phi(P)(N) and secondary component Phi(S)(N), Phi(N) = Phi(P)(N) + Phi(S)(N), and we found Phi(N) is well described by the weighted sum of the oxygen flux Phi(O) (primary cosmic rays) and the boron flux Phi(B) (secondary cosmic rays), with Phi(P)(N) = (0.090 +/- 0.002) x Phi(O) and Phi(S)(N) = (0.62 +/- 0.02) x Phi(B) over the entire rigidity range. This corresponds to a change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few GV to < 30% above 1 TV
Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station
We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90 x 10(6) helium, 8.4 x 10(6) carbon, and 7.0 x 10(6) oxygen nuclei collected by the Alpha Magnetic Spectrometer ( AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way
Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station
We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1 x 109 events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the solar maximum in April 2014. We observed that, below 40 GV, the proton flux and the helium flux show nearly identical fine structures in both time and relative amplitude. The amplitudes of the flux structures decrease with increasing rigidity and vanish above 40 GV. The amplitudes of the structures are reduced during the time period, which started one year after solar maximum, when the proton and helium fluxes steadily increase. Above similar to 3 GV the p/He flux ratio is time independent. We observed that below similar to 3 GV the ratio has a long-term decrease coinciding with the period during which the fluxes start to rise
Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 x 10(6) nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0 +/- 0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays
Poly(imide-amide)-poly(ethylene adipate) hybrid networks. I. Nanostructure and segmental dynamics
International audienc
Structure and dynamic/compositional heterogeneity in polycyanurate - Poly(tetramethylene glycol) hybrid networks
International audienceStructure and dynamics over the range from - 150 to 300°C were studied in a series of polycyanurate -poly(tetramethylene glycol) (PCN-PTMG) hybrid networks. Wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), laser-interferometric creep rate spectroscopy (CRS), differential scanning calorimetry (DSC), and thermally stimulated depolarization currents (TSDC) techniques were applied. The networks were synthesized from the dicyanate ester of bisphenol A (DCEBA) and hydroxyl-terminated PTMG with Mn = 1000, 2000 or 5000 g/mol and weight fraction of 10, 20, 30, and 40%. The noncrystalline structure and the pronounced structural nanoheterogeneity, depending on PTMG chain length and PCN-PTMG ratio in the hybrid systems, were evidenced. Combined CRS/DSC analysis revealed a complex dynamics in these networks, in particular a dispersion of glass transitions in a wide temperature range. On this basis, the presence of nanodomains with different degrees of rigid cross-linking (XCN→PCN), i.e., compositional nanoheterogeneity in these hybrids was shown. The results obtained turned out to be of applied interest because of a substantial increase in tensile strength because of arising microplasticity at low temperatures, and retaining some creep resistance, at low stresses, up to temperatures much higher the basic T
- …
