689 research outputs found
Glia as Functional Barriers and Signaling Intermediaries
Glia play a crucial role in providing metabolic support to neurons across different species. To do so, glial cells isolate distinct neuronal compartments from systemic signals and selectively transport specific metabolites and ions to support neuronal development and facilitate neuronal function. Because of their function as barriers, glial cells occupy privileged positions within the nervous system and have also evolved to serve as signaling intermediaries in various contexts. The fruit fly, Drosophila melanogaster, has significantly contributed to our understanding of glial barrier development and function. In this review, we will explore the formation of the glial sheath, blood–brain barrier, and nerve barrier, as well as the significance of glia–extracellular matrix interactions in barrier formation. Additionally, we will delve into the role of glia as signaling intermediaries in regulating nervous system devel-opment, function, and response to injury
More Than Mortar: Glia as Architects of Nervous System Development and Disease
Glial cells are an essential component of the nervous system of vertebrates and
invertebrates. In the human brain, glia are as numerous as neurons, yet the importance
of glia to nearly every aspect of nervous system development has only been expounded
over the last several decades. Glia are now known to regulate neural specification,
synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity,
it is not surprising that the contribution of glia to neuronal disease pathogenesis is a
growing area of research. In this review, we will summarize the accumulated evidence
of glial participation in several distinct phases of nervous system development and
organization—neural specification, circuit wiring, and circuit function. Finally, we will
highlight how these early developmental roles of glia contribute to nervous system
dysfunction in neurodevelopmental and neurodegenerative disorder
Molecular profiling of invertebrate glia
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia–neuron interactions. Here, we summarize studies that have applied current state-of-the-art “-omics” techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology
Consistent model of magnetism in ferropnictides
The discovery of superconductivity in LaFeAsO introduced the ferropnictides
as a major new class of superconducting compounds with critical temperatures
second only to cuprates. The presence of magnetic iron makes ferropnictides
radically different from cuprates. Antiferromagnetism of the parent compounds
strongly suggests that superconductivity and magnetism are closely related.
However, the character of magnetic interactions and spin fluctuations in
ferropnictides, in spite of vigorous efforts, has until now resisted
understanding within any conventional model of magnetism. Here we show that the
most puzzling features can be naturally reconciled within a rather simple
effective spin model with biquadratic interactions, which is consistent with
electronic structure calculations. By going beyond the Heisenberg model, this
description explains numerous experimentally observed properties, including the
peculiarities of the spin wave spectrum, thin domain walls, crossover from
first to second order phase transition under doping in some compounds, and
offers new insight in the occurrence of the nematic phase above the
antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Comparison of the nutritional content of products, with and without nutrient claims, targeted at children in Brazil
Many children's food products highlight positive attributes on their front-of-package labels in the form of nutrient claims. This cross-sectional study investigated all retailed packaged foods (n 5620) in a major Brazilian supermarket, in order to identify the availability of products targeted at children, and to compare the nutritional content of products with and without nutrient claims on labels. Data on energy, carbohydrate, protein, fibre, Na and total and SFA content, along with the presence and type of nutrient claims, were obtained in-store from labels of all products. Products targeted at children were identified, divided into eight food groups and compared for their nutritional content per 100 g/ml and the presence of nutrient claims using the Mann-Whitney U test (P<0·05). Of the 535 food products targeted at children (9·5 % of all products), 270 (50·5 %) displayed nutrient claims on their labels. Children's products with nutrient claims had either a similar or worse nutritional content than their counterparts without nutrient claims. The major differences among groups were found in Group 8 (e.g. sauces and ready meals), in which children's products bearing nutrient claims had higher energy, carbohydrate, Na and total and SFA content per 100 g/ml than products without nutrient claims (P<0·05). This suggests that, to prevent misleading parents who are seeking healthier products for their children, the regulation on the use of nutrient claims should be revised, so that only products with appropriate nutrient profiles are allowed to display them
Timing temporal transitions during brain development
During development a limited number of progenitors generate diverse cell types that comprise the nervous system. Neuronal diversity, which arises largely at the level of neural stem cells, is critical for brain function. Often these cells exhibit temporal patterning: they sequentially produce neurons of distinct cell fates as a consequence of intrinsic and/or extrinsic cues. Here, we review recent advances in temporal patterning during neuronal specification, focusing on conserved players and mechanisms in invertebrate and vertebrate models. These studies underscore temporal patterning as an evolutionarily conserved strategy to generate neuronal diversity. Understanding the general principles governing temporal patterning and the molecular players involved will improve our ability to direct neural progenitors towards specific neuronal fates for brain repair
The Red Sea, Coastal Landscapes, and Hominin Dispersals
This chapter provides a critical assessment of environment, landscape and resources in the Red Sea region over the past five million years in relation to archaeological evidence of hominin settlement, and of current hypotheses about the role of the region as a pathway or obstacle to population dispersals between Africa and Asia and the possible significance of coastal colonization. The discussion assesses the impact of factors such as topography and the distribution of resources on land and on the seacoast, taking account of geographical variation and changes in geology, sea levels and palaeoclimate. The merits of northern and southern routes of movement at either end of the Red Sea are compared. All the evidence indicates that there has been no land connection at the southern end since the beginning of the Pliocene period, but that short sea crossings would have been possible at lowest sea-level stands with little or no technical aids. More important than the possibilities of crossing the southern channel is the nature of the resources available in the adjacent coastal zones. There were many climatic episodes wetter than today, and during these periods water draining from the Arabian escarpment provided productive conditions for large mammals and human populations in coastal regions and eastwards into the desert. During drier episodes the coastal region would have provided important refugia both in upland areas and on the emerged shelves exposed by lowered sea level, especially in the southern sector and on both sides of the Red Sea. Marine resources may have offered an added advantage in coastal areas, but evidence for their exploitation is very limited, and their role has been over-exaggerated in hypotheses of coastal colonization
Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
- …
