448 research outputs found
Prompt Decays of General Neutralino NLSPs at the Tevatron
Recent theoretical developments have shown that gauge mediation has a much
larger parameter space of possible spectra and mixings than previously
considered. Motivated by this, we explore the collider phenomenology of gauge
mediation models where a general neutralino is the lightest MSSM superpartner
(the NLSP), focusing on the potential reach from existing and future Tevatron
searches. Promptly decaying general neutralino NLSPs can give rise to final
states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey
the final states and determine those where the Tevatron should have the most
sensitivity. We then estimate the reach of existing Tevatron searches in these
final states and discuss new searches (or optimizations of existing ones) that
should improve the reach. Finally we comment on the potential for discovery at
the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous
literatur
Long-Lived Neutralino NLSPs
We investigate the collider signatures of heavy, long-lived, neutral
particles that decay to charged particles plus missing energy. Specifically, we
focus on the case of a neutralino NLSP decaying to Z and gravitino within the
context of General Gauge Mediation. We show that a combination of searches
using the inner detector and the muon spectrometer yields a wide range of
potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5
mm. We further show that events from Z(l+l-) can be used for detailed kinematic
reconstruction, leading to accurate determinations of the neutralino mass and
lifetime. In particular, we examine the prospects for detailed event study at
ATLAS using the ECAL (making use of its timing and pointing capabilities)
together with the TRT, or using the muon spectrometer alone. Finally, we also
demonstrate that there is a region in parameter space where the Tevatron could
potentially discover new physics in the delayed Z(l+l-)+MET channel. While our
discussion centers on gauge mediation, many of the results apply to any
scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure
Higgs friends and counterfeits at hadron colliders
We consider the possibility of "Higgs counterfeits" - scalars that can be
produced with cross sections comparable to the SM Higgs, and which decay with
identical relative observable branching ratios, but which are nonetheless not
responsible for electroweak symmetry breaking. We also consider a related
scenario involving "Higgs friends," fields similarly produced through gg fusion
processes, which would be discovered through diboson channels WW, ZZ, gamma
gamma, or even gamma Z, potentially with larger cross sections times branching
ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs
counterfeit, rather than directly pointing towards the origin of the weak
scale, would indicate the presence of new colored fields necessary for the
sizable production cross section (and possibly new colorless but electroweakly
charged states as well, in the case of the diboson decays of a Higgs friend).
These particles could easily be confused for an ordinary Higgs, perhaps with an
additional generation to explain the different cross section, and we emphasize
the importance of vector boson fusion as a channel to distinguish a Higgs
counterfeit from a true Higgs. Such fields would naturally be expected in
scenarios with "effective Z's," where heavy states charged under the SM produce
effective charges for SM fields under a new gauge force. We discuss the
prospects for discovery of Higgs counterfeits, Higgs friends, and associated
charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
Selective scattering between Floquet-Bloch and Volkov states in a topological insulator
The coherent optical manipulation of solids is emerging as a promising way to
engineer novel quantum states of matter. The strong time periodic potential of
intense laser light can be used to generate hybrid photon-electron states.
Interaction of light with Bloch states leads to Floquet-Bloch states which are
essential in realizing new photo-induced quantum phases. Similarly, dressing of
free electron states near the surface of a solid generates Volkov states which
are used to study non-linear optics in atoms and semiconductors. The
interaction of these two dynamic states with each other remains an open
experimental problem. Here we use Time and Angle Resolved Photoemission
Spectroscopy (Tr-ARPES) to selectively study the transition between these two
states on the surface of the topological insulator Bi2Se3. We find that the
coupling between the two strongly depends on the electron momentum, providing a
route to enhance or inhibit it. Moreover, by controlling the light polarization
we can negate Volkov states in order to generate pure Floquet-Bloch states.
This work establishes a systematic path for the coherent manipulation of solids
via light-matter interaction.Comment: 21 pages, 6 figures, final version to appear in Nature Physic
Excluding Electroweak Baryogenesis in the MSSM
In the context of the MSSM the Light Stop Scenario (LSS) is the only region
of parameter space that allows for successful Electroweak Baryogenesis (EWBG).
This possibility is very phenomenologically attractive, since it allows for the
direct production of light stops and could be tested at the LHC. The ATLAS and
CMS experiments have recently supplied tantalizing hints for a Higgs boson with
a mass of ~ 125 GeV. This Higgs mass severely restricts the parameter space of
the LSS, and we discuss the specific predictions made for EWBG in the MSSM.
Combining data from all the available ATLAS and CMS Higgs searches reveals a
tension with the predictions of EWBG even at this early stage. This allows us
to exclude EWBG in the MSSM at greater than (90) 95% confidence level in the
(non-)decoupling limit, by examining correlations between different Higgs decay
channels. We also examine the exclusion without the assumption of a ~ 125 GeV
Higgs. The Higgs searches are still highly constraining, excluding the entire
EWBG parameter space at greater than 90% CL except for a small window of m_h ~
117 - 119 GeV.Comment: 24 Pages, 4 Figures (v3: fixed typos, minor corrections, added
references
The Status of GMSB After 1/fb at the LHC
We thoroughly investigate the current status of supersymmetry in light of the
latest searches at the LHC, using General Gauge Mediation (GGM) as a
well-motivated signature generator that leads to many different simplified
models. We consider all possible promptly-decaying NLSPs in GGM, and by
carefully reinterpreting the existing LHC searches, we derive limits on both
colored and electroweak SUSY production. Overall, the coverage of GGM parameter
space is quite good, but much discovery potential still remains even at 7 TeV.
We identify several regions of parameter space where the current searches are
the weakest, typically in models with electroweak production, third generation
sfermions or squeezed spectra, and we suggest how ATLAS and CMS might modify
their search strategies given the understanding of GMSB at 1/fb. In particular,
we propose the use of leptonic to suppress backgrounds.
Because we express our results in terms of simplified models, they have broader
applicability beyond the GGM framework, and give a global view of the current
LHC reach. Our results on 3rd generation squark NLSPs in particular can be
viewed as setting direct limits on naturalness.Comment: 44 pages, refs added, typos fixed, improved MC statistics in fig 1
2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces
The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research
Laser writing of coherent colour centres in diamond
Optically active point defects in crystals have gained widespread attention as photonic systems that can find use in quantum information technologies [1,2]. However challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single nitrogen-vacancy (NV) centres in diamond using laser writing [3]. The use of aberration correction in the writing optics allows precise positioning of vacancies within the diamond crystal, and subsequent annealing produces single NV centres with up to 45% success probability, within about 200 nm of the desired position. Selected NV centres fabricated by this method display stable, coherent optical transitions at cryogenic temperatures, a pre-requisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies
Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication
Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes-a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes-and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement. (Résumé d'auteur
- …
