56 research outputs found

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon Λ_{c}^{+} and the Λ_{c}^{+}/D^{0} production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sqrt[s_{NN}]=5.02  TeV. These new measurements show a clear decrease of the Λ_{c}^{+}/D^{0} ratio with increasing transverse momentum (p_{T}) in both collision systems in the range 2<p_{T}<12  GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/π and Λ/K_{S}^{0}. At low p_{T}, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e^{+}e^{-} and e^{-}p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC

    Get PDF
    The prompt production of the charm baryon \u39bc+ and the \u39bc+/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN=5.02 TeV. These new measurements show a clear decrease of the \u39bc+/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/\u3c0 and \u39b/KS0. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e- and e-p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies

    Editorial

    No full text

    Hafnium Monocarbide

    No full text

    Niobium Carbides

    No full text
    corecore