39 research outputs found
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
Dirac cones reshaped by interaction effects in suspended graphene
We report measurements of the cyclotron mass in graphene for carrier
concentrations n varying over three orders of magnitude. In contrast to the
single-particle picture, the real spectrum of graphene is profoundly nonlinear
so that the Fermi velocity describing the spectral slope reaches ~3x10^6 m/s at
n <10^10 cm^-2, three times the value commonly used for graphene. The observed
changes are attributed to electron-electron interaction that renormalizes the
Dirac spectrum because of weak screening. Our experiments also put an upper
limit of ~0.1 meV on the possible gap in graphene
Van der Waals heterostructures
Research on graphene and other two-dimensional atomic crystals is intense and
likely to remain one of the hottest topics in condensed matter physics and
materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by
layer in a precisely chosen sequence. The first - already remarkably complex -
such heterostructures (referred to as 'van der Waals') have recently been
fabricated and investigated revealing unusual properties and new phenomena.
Here we review this emerging research area and attempt to identify future
directions. With steady improvement in fabrication techniques, van der Waals
heterostructures promise a new gold rush, rather than a graphene aftershock
Quantum Information Splitting of Arbitrary Three-Qubit State by Using Seven-Qubit Entangled State
Modeling 2T937 Bipolar Transistors Based on Experimental Static and Frequency Characteristics
Generating multi-photon W-like states for perfect quantum teleportation and superdense coding
An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settingsPublisher's Versio
Recommended from our members
Results from the Baksan Experiment on Sterile Transitions (BEST).
The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos ν_{e} observed in previous gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred to as the "gallium anomaly," which could be interpreted as evidence for oscillations between ν_{e} and sterile neutrino (ν_{s}) states. A 3.414-MCi ^{51}Cr ν_{e} source was placed at the center of two nested Ga volumes and measurements were made of the production of ^{71}Ge through the charged current reaction, ^{71}Ga(ν_{e},e^{-})^{71}Ge, at two average distances. The measured production rates for the inner and the outer targets, respectively, are [54.9_{-2.4}^{+2.5}(stat)±1.4(syst)] and [55.6_{-2.6}^{+2.7}(stat)±1.4(syst)] atoms of ^{71}Ge/d. The ratio (R) of the measured rate of ^{71}Ge production at each distance to the expected rate from the known cross section and experimental efficiencies are R_{in}=0.79±0.05 and R_{out}=0.77±0.05. The ratio of the outer to the inner result is 0.97±0.07, which is consistent with unity within uncertainty. The rates at each distance were found to be similar, but 20%-24% lower than expected, thus reaffirming the anomaly. These results are consistent with ν_{e}→ν_{s} oscillations with a relatively large Δm^{2} (>0.5 eV^{2}) and mixing sin^{2}2θ (≈0.4)
