45 research outputs found
PHYTOCHEMICAL EXTRACTIONS, QUALITATIVE ANALYSIS, AND EVALUATION OF ANTIMICROBIAL ACTIVITY IN THE LEAF AND STEM BARK OF SOLANUM PUBESCENS WILLD.
Objective: The objective of this study was to extract the phytochemicals from leaf and stem bark of Solanum pubescens, perform qualitative analysis, and evaluate antimicrobial activity of the phytochemicals against certain microbial pathogens.
Methods: Leaf and stem bark of S. pubescens was subjected to phytochemical extractions using Soxhlet apparatus with five different solvents, identified the major constituents in different solvent extracts using standard protocols and investigated the potential antimicrobial activities of the extracts against certain selected bacterial and fungal pathogens by agar well diffusion method.
Results: The maximum yield was in methanolic extracts of leaf and stem bark of the study plant such as 18.51 and 12.5%, respectively, followed by the hydroalcohol extracts (14.23 and 10.00%). Qualitative phytochemical analysis revealed maximum number of extracted bioactive compounds when compared to other similar studies. Among the five different solvent extracts of S. pubescens, n-hexane extract of stem bark was found to be active against all the bacterial pathogens and stem bark extracts made with methanol and hydroalcohol showed antifungal activity against all the four fungal pathogens tested. Leaf extracts made with solvents such as n-hexane and ethyl acetate showed inhibition against Klebsiella pneumoniae and Staphylococcus aureus, respectively, hydroalcohol extract was active against Pseudomonas aeruginosa and Salmonella typhimurium while none of the leaf extracts of the study plant showed inhibition zones against fungal pathogens tested.
Conclusion: Multiple solvent extraction approach yielded the phytochemicals which are not yet reported and the antimicrobial activities of phytochemicals acknowledged their medicinal value
Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21
Meta-AnalysisThis is the final version of the article. Available from the American Diabetes Association via the DOI in this record.Indians undergoing socioeconomic and lifestyle transitions will be maximally affected by epidemic of type 2 diabetes (T2D). We conducted a two-stage genome-wide association study of T2D in 12,535 Indians, a less explored but high-risk group. We identified a new type 2 diabetes-associated locus at 2q21, with the lead signal being rs6723108 (odds ratio 1.31; P = 3.32 × 10⁻⁹). Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P = 6.3 × 10⁻¹²) within TMEM163 that encodes a probable vesicular transporter in nerve terminals. TMEM163 variants also showed association with decreased fasting plasma insulin and homeostatic model assessment of insulin resistance, indicating a plausible effect through impaired insulin secretion. The 2q21 region also harbors RAB3GAP1 and ACMSD; those are involved in neurologic disorders. Forty-nine of 56 previously reported signals showed consistency in direction with similar effect sizes in Indians and previous studies, and 25 of them were also associated (P < 0.05). Known loci and the newly identified 2q21 locus altogether explained 7.65% variance in the risk of T2D in Indians. Our study suggests that common susceptibility variants for T2D are largely the same across populations, but also reveals a population-specific locus and provides further insights into genetic architecture and etiology of T2D.The major funding for this work comes from Council for Scientific and Industrial Research, Government of India, in the form of the grant “Diabetes mellitus—New drug discovery R&D, molecular mechanisms, and genetic and epidemiological factors” (NWP0032-19). R.T. received a postdoctoral fellowship from the Fogarty International Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the National Institutes of Health (D43-HD-065249)
Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs
In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the
densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The
RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing
the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic
ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes
preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no
notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process
Combined Tevatron upper limit on gg->H->W+W- and constraints on the Higgs boson mass in fourth-generation fermion models
Report number: FERMILAB-PUB-10-125-EWe combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg->H->W+W- in p=pbar collisions at the Fermilab Tevatron Collider at sqrt{s}=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% Confidence Level upper limit on \sigma(gg->H) x B(H->W+W-) is 1.75 pb at m_H=120 GeV, 0.38 pb at m_H=165 GeV, and 0.83 pb at m_H=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg→H→W+W- in pp̅ collisions at the Fermilab Tevatron Collider at √s=1.96 TeV. With 4.8 fb-1 of integrated luminosity analyzed at CDF and 5.4 fb-1 at D0, the 95% confidence level upper limit on σ(gg→H)×B(H→W+W-) is 1.75 pb at mH=120 GeV, 0.38 pb at mH=165 GeV, and 0.83 pb at mH=200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.Peer reviewe
Lipid Classes and Fatty Acid Patterns are Altered in the Brain of γ-Synuclein Null Mutant Mice
The well-documented link between α-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of α-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of γ-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of γ-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of γ-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of γ-synuclein null mutant mice. These findings show that γ-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like α-synuclein, might affect neuronal function via modulation of lipid metabolism
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Extreme disorder in an ultrahigh-affinity protein complex
Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes
PHYTOCHEMICAL EXTRACTIONS, QUALITATIVE ANALYSIS, AND EVALUATION OF ANTIMICROBIAL ACTIVITY IN THE LEAF AND STEM BARK OF SOLANUM PUBESCENS WILLD.
Objective: The objective of this study was to extract the phytochemicals from leaf and stem bark of Solanum pubescens, perform qualitative analysis, and evaluate antimicrobial activity of the phytochemicals against certain microbial pathogens.
Methods: Leaf and stem bark of S. pubescens was subjected to phytochemical extractions using Soxhlet apparatus with five different solvents, identified the major constituents in different solvent extracts using standard protocols and investigated the potential antimicrobial activities of the extracts against certain selected bacterial and fungal pathogens by agar well diffusion method.
Results: The maximum yield was in methanolic extracts of leaf and stem bark of the study plant such as 18.51 and 12.5%, respectively, followed by the hydroalcohol extracts (14.23 and 10.00%). Qualitative phytochemical analysis revealed maximum number of extracted bioactive compounds when compared to other similar studies. Among the five different solvent extracts of S. pubescens, n-hexane extract of stem bark was found to be active against all the bacterial pathogens and stem bark extracts made with methanol and hydroalcohol showed antifungal activity against all the four fungal pathogens tested. Leaf extracts made with solvents such as n-hexane and ethyl acetate showed inhibition against Klebsiella pneumoniae and Staphylococcus aureus, respectively, hydroalcohol extract was active against Pseudomonas aeruginosa and Salmonella typhimurium while none of the leaf extracts of the study plant showed inhibition zones against fungal pathogens tested.
Conclusion: Multiple solvent extraction approach yielded the phytochemicals which are not yet reported and the antimicrobial activities of phytochemicals acknowledged their medicinal value.</jats:p
