15 research outputs found

    The multiple facets of drug resistance: one history, different approaches

    Full text link

    Ship-mounted real-time surface observational system on board Indian vessels for validation and refinement of model forcing fields

    No full text
    A network of ship-mounted real-time Automatic Weather Stations integrated with Indian geosynchronous satellites Indian National Satellites (INSATs) 3A and 3C, named Indian National Centre for Ocean Information Services Real-Time Automatic Weather Stations (I-RAWS), is established. The purpose of I-RAWS is to measure the surface meteorological-ocean parameters and transmit the data in real time in order to validate and refine the forcing parameters (obtained from different meteorological agencies) of the Indian Ocean Forecasting System (INDOFOS). Preliminary validation and intercomparison of analyzed products obtained from the National Centre for Medium Range Weather Forecasting and the European Centre for Medium-Range Weather Forecasts using the data collected from I-RAWS were carried out. This I-RAWS was mounted on board oceanographic research vessel Sagar Nidhi during a cruise across three oceanic regimes, namely, the tropical Indian Ocean, the extratropical Indian Ocean, and the Southern Ocean. The results obtained from such a validation and intercomparison, and its implications with special reference to the usage of atmospheric model data for forcing ocean model, are discussed in detail. It is noticed that the performance of analysis products from both atmospheric models is similar and good; however, European Centre for Medium-Range Weather Forecasts air temperature over the extratropical Indian Ocean and wind speed in the Southern Ocean are marginally better

    Observational study of cloud base height and its frequency over a tropical station, Thiruvananthapuram, using a ceilometer

    No full text
    This study aims to investigate the characteristic features of cloud base height (CBH) over Thiruvananthapuram during different seasons. CBH data were used for the present work derived from the Vaisala Laser Ceilometer, CL31 (VLC) installed at the campus of the Centre for Earth Science Studies, Akkulam (8.29° N, 76.59° E, 15 m above sea level). The VLC was in operation from the second week of July 2006 onwards. From the study, we found that CBH shows distinct diurnal and seasonal variations during all the seasons (except on rainy days). The diurnal variation for low-level clouds was different from that for the mid-level clouds. A cloud-free layer is evident in the region between 2.5 and 4 km. This cloud-free zone is more prominent during the southwest monsoon period compared to other seasons. Moreover, the monthly variations of cloud frequency and CBH were also described in addition to the different periodicities in cloud frequency. The periodicities found in the cloud frequency were 8 days and 30 days and these are significant at the 5 level. Thermodynamic parameters from the radiosonde were also related to the cloud frequency for various seasons and they were in good agreement

    Not Available

    No full text
    Not AvailableArsenic exposure can cause several cardiovascular diseases, including hypertension, atherosclerosis and microvascular disease. Earlier, we reported that arsenic-mediated enhancement of angiotensin II (AngII) signaling can impair vascular physiology. Here, we investigated whether the AT1 receptor (AT1R) blocker candesartan can ameliorate the arsenic-induced hypertensive vascular remodeling in rats and whether the amelioration could relate to attenuation in vascular AngII and TGF-β signaling. Rats were exposed to sodium arsenite (50ppm) through drinking water for 90 consecutive days. Candesartan (1mg/kg bw, orally) was administered once daily during the last 30days of arsenic exposure. Non-invasive blood pressure was recorded weekly in conscious rats, while AngII-induced change in mean arterial pressure in anaesthetized rats was measured by invasive method on the 91st day. On this day, blood was collected from other animals for measuring AngII level. Western blot of AT1, AT2 and TβRII receptors; ELISA of PTK, RasGAP, ERK-1/2, TGF-β and CTGF; immunohistochemistry of phosphorylated Smad3, Smad4 and collagen III, hydroxyproline/total collagen estimation, collagen deposition by Masson's trichrome staining and histomorphometry were carried out in thoracic aorta. Arsenic increased non-invasive systolic, diastolic and mean arterial pressure. Further, AngII caused concentration-dependent incremental change in mean arterial pressure in the arsenic-exposed rats. Arsenic upregulated AT1 and TβRII receptor proteins; elevated the levels of PTK, ERK-1/2, TGF-β and CTGF, decreased RasGAP level and augmented the immunoreactivities of Smad3, Smad4 and collagen III. Arsenic also increased hydroxyproline/total collagen level, proliferation of collagen fibres and thickness of aortic wall and collagenous adventitia. Candesartan normalized blood pressure, regularized receptor expressions, MAP kinase and TGF-β signaling, restored collagen deposition and regressed aortic thickness. Our results demonstrate that candesartan can ameliorate the arsenic-mediated systemic hypertension and vascular remodeling in rats by regularizing the signaling pathways of AngII and TGF-β.Not Availabl

    Dietary chalcones with chemopreventive and chemotherapeutic potential

    Get PDF
    Chalcones are absorbed in the daily diet and appear to be promising cancer chemopreventive agents. Chalcones represent an important group of the polyphenolic family, which includes a large number of naturally occurring molecules. This family possesses an interesting spectrum of biological activities, including antioxidative, antibacterial, anti-inflammatory, anticancer, cytotoxic, and immunosuppressive potential. Compounds of this family have been shown to interfere with each step of carcinogenesis, including initiation, promotion and progression. Moreover, numerous compounds from the family of dietary chalcones appear to show activity against cancer cells, suggesting that these molecules or their derivatives may be considered as potential anticancer drugs. This review will focus primarily on prominent members of the chalcone family with an 1,3-diphenyl-2-propenon core structure. Specifically, the inhibitory effects of these compounds on the different steps of carcinogenesis that reveal interesting chemopreventive and chemotherapeutic potential will be discussed
    corecore