3,107 research outputs found
Optimal solutions to matrix-valued Nehari problems and related limit theorems
In a 1990 paper Helton and Young showed that under certain conditions the
optimal solution of the Nehari problem corresponding to a finite rank Hankel
operator with scalar entries can be efficiently approximated by certain
functions defined in terms of finite dimensional restrictions of the Hankel
operator. In this paper it is shown that these approximants appear as optimal
solutions to restricted Nehari problems. The latter problems can be solved
using relaxed commutant lifting theory. This observation is used to extent the
Helton and Young approximation result to a matrix-valued setting. As in the
Helton and Young paper the rate of convergence depends on the choice of the
initial space in the approximation scheme.Comment: 22 page
Isotopic variation of parity violation in atomic ytterbium
We report on measurements of atomic parity violation, made on a chain of
ytterbium isotopes with mass numbers A=170, 172, 174, and 176. In the
experiment, we optically excite the 6s2 1S0 -> 5d6s 3D1 transition in a region
of crossed electric and magnetic fields, and observe the interference between
the Stark- and weak-interaction-induced transition amplitudes, by making field
reversals that change the handedness of the coordinate system. This allows us
to determine the ratio of the weak-interaction-induced electric-dipole (E1)
transition moment and the Stark-induced E1 moment. Our measurements, which are
at the 0.5% level of accuracy for three of the four isotopes measured, allow a
definitive observation of the isotopic variation of the weak-interaction
effects in an atom, which is found to be consistent with the prediction of the
Standard Model. In addition, our measurements provide information about an
additional Z' boson.Comment: 19 pages, 4 figures, 2 table
The Supernova Gamma-Ray Burst Connection
The chief distinction between ordinary supernovae and long-soft gamma-ray
bursts (GRBs) is the degree of differential rotation in the inner several solar
masses when a massive star dies, and GRBs are rare mainly because of the
difficulty achieving the necessary high rotation rate. Models that do provide
the necessary angular momentum are discussed, with emphasis on a new single
star model whose rapid rotation leads to complete mixing on the main sequence
and avoids red giant formation. This channel of progenitor evolution also gives
a broader range of masses than previous models, and allows the copious
production of bursts outside of binaries and at high redshifts. However, even
the production of a bare helium core rotating nearly at break up is not, by
itself, a sufficient condition to make a gamma-ray burst. Wolf-Rayet mass loss
must be low, and will be low in regions of low metallicity. This suggests that
bursts at high redshift (low metallicity) will, on the average, be more
energetic, have more time structure, and last longer than bursts nearby. Every
burst consists of three components: a polar jet (~0.1 radian), high energy,
subrelativistic mass ejection (~1 radian), and low velocity equatorial mass
that can fall back after the initial explosion. The relative proportions of
these three components can give a diverse assortment of supernovae and high
energy transients whose properties may vary with redshift.Comment: 10 pages, to appear in AIP Conf. Proc. "Gamma Ray Bursts in the Swift
Era", Eds. S. S. Holt, N. Gehrels, J. Nouse
On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere
Producción CientíficaSeparable Hamiltonian systems either in sphero-conical coordinates on an S2 sphere or in elliptic coordinates on a R2 plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space
to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context
Topological Crystalline Insulators in the SnTe Material Class
Topological crystalline insulators are new states of matter in which the
topological nature of electronic structures arises from crystal symmetries.
Here we predict the first material realization of topological crystalline
insulator in the semiconductor SnTe, by identifying its nonzero topological
index. We predict that as a manifestation of this nontrivial topology, SnTe has
metallic surface states with an even number of Dirac cones on high-symmetry
crystal surfaces such as {001}, {110} and {111}. These surface states form a
new type of high-mobility chiral electron gas, which is robust against disorder
and topologically protected by reflection symmetry of the crystal with respect
to {110} mirror plane. Breaking this mirror symmetry via elastic strain
engineering or applying an in-plane magnetic field can open up a continuously
tunable band gap on the surface, which may lead to wide-ranging applications in
thermoelectrics, infrared detection, and tunable electronics. Closely related
semiconductors PbTe and PbSe also become topological crystalline insulators
after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5
pages, 4 figure
Cancer and thrombosis: Managing the risks and approaches to thromboprophylaxis
Patients with cancer are at increased risk of venous thromboembolism (VTE) compared with patients without cancer. This results from both the prothrombotic effects of the cancer itself and iatrogenic factors, such as chemotherapy, radiotherapy, indwelling central venous devices and surgery, that further increase the risk of VTE. Although cancer-associated thrombosis remains an important cause of morbidity and mortality, it is often underdiagnosed and undertreated. However, evidence is accumulating to support the use of low-molecular-weight heparins (LMWHs) in the secondary prevention of VTE in patients with cancer. Not only have LMWHs been shown to be at least as effective as coumarin derivatives in this setting, but they have a lower incidence of complications, including bleeding, and are not associated with the practical problems of warfarin therapy. Furthermore, a growing number of studies indicate that LMWHs may improve survival among patients with cancer due to a possible antitumor effect. Current evidence suggests that LMWHs should increasingly be considered for the long-term management of VTE in patients with cancer
Gateway vectors for efficient artificial gene assembly in vitro and expression in yeast Saccharomyces cerevisiae
Peer reviewedPublisher PD
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Effect of Infiltration Material on a LSM<sub>15</sub>/CGO<sub>10</sub> Electrochemical Reactor in the Electrochemical Oxidation of Propene
- …
