657 research outputs found
Molecular dynamics simulation of plane poiseuille flow in nanochannels
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.This paper presents new techniques and results of simulating microflows in plane channels by the molecular dynamics (MD) method. Mass forces and thermostat are not used in these techniques. The flows are simulated by both hard-sphere molecules and molecules with the Lennard-Jones intermolecular potential. Flow at a given fluid flow rate is implemented. In this case, the initial shock profile is transformed to a parabolic type profile. However, unlike in ordinary Poiseuille flows, a slip effect is recorded on the channel walls. It is shown that, in a nanochannel, a linear pressure gradient occurs. Fluid structuring is studied. The effects of fluid density, accommodation coefficients, and channel dimensions on flow properties are investigated.This work was supported in part by the Russian Foundation for Basic Researches (grant No. 07-08-00164) and by the grant of
the President of the Russian Federation for
Support of Leading Scientific Schools (project no. NSh-454.2008.1)
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Degradation of structure and properties of rail surface layer at long-term operation
The microstructure evolution and properties variation of the surface layer of rail steel after passed 500 and 1000 million tons of gross weight (MTGW) have been investigated. The wear rate increases to 3 and 3.4 times after passed 500 and 1000 MTGW, respectively. The corresponding friction coefficient decreases by 1.4 and 1.1 times. The cementite plates were destroyed and formed the cementite particles of around 10-50 nm in size after passed 500 MTGW. The early stage dynamical recrystallization was observed after passed 1000 MTGW. The mechanisms for these have been suggested. The large number of bend extinction contours is revealed in the surface layer. The internal stress field is evaluated
NLO QCD Corrections to -to-Charmonium Form Factors
The meson to S-wave Charmonia transition form factors are
calculated in next-to-leading order(NLO) accuracy of Quantum
Chromodynamics(QCD). Our results indicate that the higher order corrections to
these form factors are remarkable, and hence are important to the
phenomenological study of the corresponding processes. For the convenience of
comparison and use, the relevant expressions in asymptotic form at the limit of
for the radiative corrections are presented
Measuring the Hidden Aspects of Solar Magnetism
2008 marks the 100th anniversary of the discovery of astrophysical magnetic
fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines
in sunspots. With the introduction of Babcock's photoelectric magnetograph it
soon became clear that the Sun's magnetic field outside sunspots is extremely
structured. The field strengths that were measured were found to get larger
when the spatial resolution was improved. It was therefore necessary to come up
with methods to go beyond the spatial resolution limit and diagnose the
intrinsic magnetic-field properties without dependence on the quality of the
telescope used. The line-ratio technique that was developed in the early 1970s
revealed a picture where most flux that we see in magnetograms originates in
highly bundled, kG fields with a tiny volume filling factor. This led to
interpretations in terms of discrete, strong-field magnetic flux tubes embedded
in a rather field-free medium, and a whole industry of flux tube models at
increasing levels of sophistication. This magnetic-field paradigm has now been
shattered with the advent of high-precision imaging polarimeters that allow us
to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar
magnetism that have been hidden to Zeeman diagnostics. It is found that the
bulk of the photospheric volume is seething with intermediately strong, tangled
fields. In the new paradigm the field behaves like a fractal with a high degree
of self-similarity, spanning about 8 orders of magnitude in scale size, down to
scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra
Theories unifying gravity with other interactions suggest spatial and
temporal variation of fundamental "constants" in the Universe. A change in the
fine structure constant, alpha, could be detected via shifts in the frequencies
of atomic transitions in quasar absorption systems. Recent studies using 140
absorption systems from the Keck telescope and 153 from the Very Large
Telescope, suggest that alpha varies spatially. That is, in one direction on
the sky alpha seems to have been smaller at the time of absorption, while in
the opposite direction it seems to have been larger.
To continue this study we need accurate laboratory measurements of atomic
transition frequencies. The aim of this paper is to provide a compilation of
transitions of importance to the search for alpha variation. They are E1
transitions to the ground state in several different atoms and ions, with
wavelengths ranging from around 900 - 6000 A, and require an accuracy of better
than 10^{-4} A. We discuss isotope shift measurements that are needed in order
to resolve systematic effects in the study. The coefficients of sensitivity to
alpha-variation (q) are also presented.Comment: Includes updated version of the "alpha line" lis
Experimental study of the radiation emitted by 180-GeV/c electrons and positrons volume-reflected in a bent crystal
The radiation emitted by 180-GeV/c volume-reflected electrons and positrons impinging on a bent crystal has been measured by the H8RD22 Collaboration on the H8 beamline at the CERN SPS. A dedicated spectrometer has been developed to measure high-energy photon spectra (up to similar to 100 GeV) under volume reflection: photon and charged particle beams have been separated by a bending magnet and leptons were detected and tagged by microstrip silicon detectors and a Pb-scintillator sampling calorimeter. A comparison between the experimental and analytical data for the amorphous and volume-reflection cases is presented and the differences are discussed
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
High-efficiency deflection of high energy protons due to channeling along the (110) axis of a bent silicon crystal
A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles
- …
