7 research outputs found

    3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus

    No full text
    Alexander M Demin,1,* Alexandra G Pershina,2,3,* Vladimir V Ivanov,2 Kseniya V Nevskaya,2 Oleg B Shevelev,4 Artyom S Minin,5 Iliya V Byzov,5 Alexey E Sazonov,2 Victor P Krasnov,1 Ludmila M Ogorodova2 1Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Yekaterinburg, 2Siberian State Medical University, 3Russian National Research Tomsk Polytechnic University, Tomsk, 4Institute of Cytology and Genetics SB RAS, Novosibirsk, 5Miheev Institute of Metal Physics of RAS (Ural Branch), Yekaterinburg, Russia *These authors contributed equally to this work Purpose: Liver fluke causes severe liver damage in an infected human. However, the infection often remains neglected due to the lack of pathognomonic signs. Nanoparticle-enhanced magnetic resonance imaging (MRI) offers a promising technique for detecting liver lesions induced by parasites.Materials and methods: Surface modification of iron oxide nanoparticles produced by coprecipitation from a solution of Fe3+ and Fe2+ salts using 3-aminopropylsilane (APS) was carried out. The APS-modified nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis . Magnetic resonance properties of MNPs were investigated in vitro and in vivo.Results: The amount of APS grafted on the surface of nanoparticles (0.60±0.06 mmol g-1) was calculated based on elemental analysis and infrared spectroscopy data. According to transmission electron microscopy data, there were no essential changes in the structure of nanoparticles during the modification. The APS-modified nanoparticles exhibit high magnetic properties; the calculated relaxivity r2 was 271 mmol-1 s-1. To obtain suspension with optimal hydrodynamic characteristics, amino groups on the surface of nanoparticles were converted into an ionic form with HCl. Cellular uptake of modified nanoparticles by rat hepatoma cells and human monocytes in vitro was 74.1±4.5 and 10.0±3.7 pg [Fe] per cell, respectively. Low cytotoxicity of the nanoparticles was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin V/7-aminoactinomycin D flow cytometry assays. For the first time, magnetic nanoparticles were applied for contrast-enhanced MRI of liver lesions induced by Opisthorchis felineus.Conclusion: The synthesized APS-modified iron oxide nanoparticles showed high efficiency as an MRI contrast agent for the evaluation of opisthorchiasis-related liver damage. Keywords: magnetic nanoparticles, alkoxysilane, magnetic resonance imaging, liver fluk

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (alpha) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    corecore