1,336 research outputs found

    Punishment: Benefits, Risks, and Alternatives in a Business Setting

    Get PDF
    Punishment is utilized in many settings in the world today, but it is continually getting more negative responses for its use in the workplace. Punishment\u27s main use is to decrease the occurrence of a behavior that is undesirable. In a business setting, this would most likely be a behavior that is a violation of policy or unsatisfactory work performance. A comparison of the positive aspects of punishment with its negative features, by utilizing information provided by scholarly journals and websites along with a survey of 31 employees, has yielded the results that there may be a better alternative to punishment

    Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    Get PDF
    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner

    Junior Recital, Lewis Vaden, clarinet

    Get PDF
    The presentation of this junior recital will fulfill in part the requirements for the Bachelor of Music degree in Music Education. Lewis Vaden studies clarinet with Dr. Charles West

    A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    Get PDF
    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC)

    Gaseous Surrogate Hydrocarbons for a Hifire Scramjet that Mimic Opposed Jet Extinction Limits for Cracked JP Fuels

    Get PDF
    This paper describes, first, the top-down methodology used to define simple gaseous surrogate hydrocarbon (HC) fuel mixtures for a hypersonic scramjet combustion subtask of the HiFIRE program. It then presents new and updated Opposed Jet Burner (OJB) extinction-limit Flame Strength (FS) data obtained from laminar non-premixed HC vs. air counterflow diffusion flames at 1-atm, which follow from earlier investigations. FS represents a strain-induced extinction limit based on cross-section-average air jet velocity, U(sub air), that sustains combustion of a counter jet of gaseous fuel just before extinction. FS uniquely characterizes a kinetically limited fuel combustion rate. More generally, Applied Stress Rates (ASRs) at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or t) can directly be compared with extinction limits determined numerically using either a 1-D or (preferably) a 2-D Navier Stokes simulation with detailed transport and finite rate chemistry. The FS results help to characterize and define three candidate surrogate HC fuel mixtures that exhibit a common FS 70% greater than for vaporized JP-7 fuel. These include a binary fuel mixture of 64% ethylene + 36% methane, which is our primary recommendation. It is intended to mimic the critical flameholding limit of a thermally- or catalytically-cracked JP-7 like fuel in HiFIRE scramjet combustion tests. Our supporting experimental results include: (1) An idealized kinetically-limited ASR reactivity scale, which represents maximum strength non-premixed flames for several gaseous and vaporized liquid HCs; (2) FS characterizations of Colket and Spadaccini s suggested ternary surrogate, of 60% ethylene + 30% methane + 10% n-heptane, which matches the ignition delay of a typical cracked JP fuel; (3) Data showing how our recommended binary surrogate, of 64% ethylene + 36% methane, has an identical FS; (4) Data that characterize an alternate surrogate of 44% ethylene + 56% ethane with identical FS and nearly equal molecular weights; this could be useful when systematically varying the fuel composition. However, the mixture liquefies at much lower pressure, which limits on-board storage of gaseous fuel; (5) Dynamic Flame Weakening results that show how oscillations in OJB input flow (and composition) can weaken (extinguish) surrogate flames up to 200 Hz, but the weakening is 2.5x smaller compared to pure methane; and finally, (6) FS limits at 1-atm that compare with three published 1-D numerical OJB extinction results using four chemical kinetic models. The methane kinetics generally agree closely at 1-atm, whereas, the various ethylene models predict extinction limits that average ~ 45% high, which represents a significant problem for numerical simulation of surrogate-based flameholding in a scramjet cavity. Finally, we continue advocating the FS approach as more direct and fundamental for assessing idealized scramjet flameholding potentials than measurements of "unstrained" premixed laminar burning velocity or blowout in a Perfectly Stirred Reactor

    Management of bilateral idiopathic renal hematuria in a dog with silver nitrate

    Get PDF
    Renal hematuria has limited treatment options. This report describes management of bilateral idiopathic renal hematuria in a dog with surgically assisted installation of 0.5% silver nitrate solution. Initial treatment resulted in freedom from clinical signs or recurrent anemia for 10 months; however, recurrence of bleeding following a nephrectomy resulted in euthanasia

    Aeronautical Situational Awareness - Airport Surface

    Get PDF
    This paper advocates for a specific design approach, based on simple principals, yet addresses challenges faced by the system engineers when designing complex data and information infrastructure. The document provides guidance for breaking out various work elements in the overall network architecture design, so that communication systems are conceived and effectively realized regardless of their location, size and local specifics. Although targeted at the Global Airspace System (GAS) and National Airspace System (NAS), this framework can be applied to any network-centric architecture

    Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Get PDF
    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen depletion (from 21 to 19.5 %), for testing the "64/36" surrogate fuel in Langley s Arc-Heated Scramjet Test Facility for HIFiRE engine designs. The FS results show a generally small (< 4 %) "nitric oxide enhancement" effect, relative to clean air, for up to 3 % NO (freestream Mach number up to 7 in Arc Jet testing). However, a progressively large "oxygendeficiency weakening" effect develops. For 3 % NO, a net weakening of 26 % in FS is derived for the "64/36" fuel vs. air. The corresponding net weakening for pure ethylene is 20 %. A number of practical recommendations regarding facility test effects are offered

    Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    Get PDF
    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous capacity. The new FS results refine our earlier idealized reactivity scale that shows wide ranging (50 x) diameter-normalized FSs for various HCs. These range from JP-10 and methane to H2 air, which produces an exceptionally strong flame that agrees within approx. 1% of recent 2-D numerically simulations. Finally, we continue advocating the FS approach as more direct and fundamental, for assessing idealized scramjet flameholding potentials, than measurements of unstrained laminar burning velocity or blowout in a Perfectly Stirred Reactor
    corecore